Lesson 1.4 The Power of a Product and the Power of a Quotient

Objective
*Understand the power of a product property *Understand the power of quotient property *Use properties of exponents to simplify expressions

- Common Core State Standards 8.EE. 1
- Mathematical Practices 4. Model mathematics. 5. Use tools strategically. 6. Attend to precision.

Lesson 1.4 The Power of a Product and the Power of a Quotient

Simplify each expression. Write your answer in exponential notation.
a) $3^{4} \cdot 7^{4}$
b) $\left(-\frac{1}{3}\right)^{5} \cdot\left(-\frac{2}{5}\right)^{5}$
c) $(-2.4)^{3} \cdot(0.5)^{3}$
a) $a^{4} \cdot b^{4}$
b) $(2 r)^{5} \cdot(7 s)^{5}$
c) $\left(\frac{1}{4 x}\right)^{7}\left(-20 x^{2}\right)^{7}$

Lesson 1.4 The Power of a Product and the Power of a Quotient

Simplify each expression. Write your answer in exponential notation.

Lesson 1.4 The Power of a Product and the Power of a Quotient

Your Turn
$(1.8)^{2} \cdot(0.75)^{2}$

Lesson 1.4 The Power of a Product and the Power of a Quotient

Your Turn
$(1.8)^{2} \cdot(0.75)^{2} \quad[(1.8) \cdot(0.75)]^{2} ;$ product
$(1.35)^{2}$

Lesson 1.4 The Power of a Product and the Power of a Quotient

Your Turn
$\left(-3 y^{2}\right)^{3} \cdot\left(\frac{1}{12 y}\right)^{3}$

Lesson 1.4 The Power of a Product and the Power of a Quotient

Your Turn

$$
\left(-3 y^{2}\right)^{3} \cdot\left(\frac{1}{12 y}\right)^{3}
$$

$$
-\left(\frac{y}{4}\right)^{3}
$$

LESSOn 1.4 The Power of a Product and the Power of a Quotient

Independent Practice \#1-7 and 25 Challenge \#23-24 and 26

Practice 1.4

Simplify each expression. Write your answer in exponential notation.
(1) $5^{4} \cdot 6^{4}$
(3) $2^{5} \cdot 10^{5}$
(5) $(2 x)^{5} \cdot(3 y)^{5}$
(7) $\left(-\frac{1}{3}\right)^{4} \cdot\left(-\frac{2}{5}\right)^{4}$
(2) $5.4^{3} \cdot 4.5^{3}$
(4) $a^{3} \cdot b^{3}$
($6(2.5 a)^{6} \cdot(1.6 b)^{6}$
(8) $9^{2} \div 3^{2}$

Homework

Lesson 1.3 The Power of a Power
Simplify each expression. Write your answer in exponential notation.

1. $\left(6^{5}\right)^{3}$
2. $\left(9^{5}\right)^{4}$
3. $\left(34^{8}\right)^{2}$
4. $\left(18^{6}\right)^{7}$
5. $\left(p^{5}\right)^{2}$
6. $\left[(4 b)^{4}\right]^{4}$
7. $\left[(28 x)^{7}\right]^{2}$

Math Jourmal Charles thinks that $a^{3} \cdot b^{3}=a b^{6}$. Is he correct? Why?

Lesson Check 1 \& 7
(can use the power of product property to simplify expressions)

Lesson 1.3 Powers of Powers

Understanding of Learning

Lesson 1.4 The Power of a Product and the Power of a Quotient

Ticket Out the Door

Using algebraic notation, state the power of a product property and the power of a quotient property.

