Objective

- *Understand zero and negative exponents
- *Simplify expressions involving zero and negative exponents

- Common Core State Standards 8.EE.1
- Mathematical Practices 4. Model mathematics. 5. Use tools strategically. 6. Attend to precision.

$$10^5 = 10^4 = 10^4$$

$$10^3 =$$

$$10^2 =$$

$$10^1 =$$

Expand each exponential expressions and write what you notice

$$10^5 = 100,000$$
 $10^4 = 100^3 = 100^2 = 100^2 = 1000$

 $10^1 =$

$$10^5 = 10^4 = 10^4$$

$$10^3 =$$

$$10^2 =$$

$$10^1 =$$

```
10^5 = 100,000
10^4 = 10,000
10^3 = 10^2 = 10^1 = 10^1
```

$$10^5 = 10^4 = 10^4$$

$$10^3 =$$

$$10^2 =$$

$$10^1 =$$

$$10^5 = 100,000$$
 $10^4 = 10,000$
 $10^3 = 1,000$
 $10^2 = 10^4$

$$10^5 = 10^4 = 10^4$$

$$10^3 =$$

$$10^2 =$$

$$10^1 =$$

$$10^5 = 100,000$$
 $10^4 = 10,000$
 $10^3 = 1,000$
 $10^2 = 100$
 $10^1 = 100$

$$10^5 = 10^4 = 10^4$$

$$10^3 =$$

$$10^2 =$$

$$10^1 =$$

$$10^5 = 100,000$$
 $10^4 = 10,000$
 $10^3 = 1,000$
 $10^2 = 100$
 $10^1 = 10$

After noticing a pattern with exponents, what do you think 10 to the zero power will be? Think-Pair-Share

$$10^{5} = 100,000$$
 $10^{4} = 10,000$
 $10^{3} = 1,000$
 $10^{2} = 100$
 $10^{1} = 10$
 $10^{1} = 10$

After noticing a pattern with exponents, what do you think 10 to the zero power will be? Think-Pair-Share

$$10^5 = 100,000$$

 $10^4 = 10,000$
 $10^3 = 1,000$
 $10^2 = 100$
 $10^1 = 10$
 $10^0 = 1$

Zero as an Exponent

A nonzero number raised to the zero power is equal to 1. $a^0 = 1, a \neq 0$

You have seen that when a number such as 4 is raised to the zero power, its value is 1. In fact, any number except 0 raised to the zero power is equal to 1.

Simplify each expression. Write your answer in exponential notation.

Example 22

a)
$$7^3 \cdot 7^0$$
 b) $1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$

Simplify each expression. Write your answer in exponential notation.

Example 22

b)
$$1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$$

Solution

$$7^3 \cdot 7^0 = 7^3 \cdot 1$$
 Raise to the zero power.

Solution

$$1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 = 1 \cdot 100 + 2 \cdot 10 + 3 \cdot 1$$

= 123

Simplify each expression. Write your answer in exponential notation.

c)
$$\frac{4^2 \cdot 4^8}{4^8}$$

Simplify each expression. Write your answer in exponential notation.

c)
$$\frac{4^2 \cdot 4^6}{4^8}$$

Solution

$$\frac{4^{2} \cdot 4^{6}}{4^{8}} = \frac{4^{2+6}}{4^{8}}$$

$$= \frac{4^{8}}{4^{8}}$$

$$= 4^{8-8}$$

$$= 4^{0}$$

Use the product of powers property.

Simplify.

Use the quotient of powers property.

Simplify.

Evaluate.

Simplify each expression. Write your answer in exponential notation.

d)
$$(a^4 \div a^0) \cdot a^3$$

Simplify each expression. Write your answer in exponential notation.

d)
$$(a^4 \div a^0) \cdot a^3$$

Solution

$$(a4 ÷ a0) · a3 = a4 ÷ 1 · a3$$
$$= a4 · a3$$
$$= a4+3$$
$$= a7$$

Raise to the zero power.

Simplify.

Use the product of powers property.

Simplify.

1.6°
$$\div$$
 0.4°

$$2 \frac{3 \cdot 3^{7}}{3^{10}}$$

$$1.6^{\circ} \div 0.4^{\circ} = \frac{?}{?} \div \frac{?}{0.4^{\circ}}$$
 Raise to the $\frac{?}{?}$ power. **Zero**

$$= \frac{?}{?} \cdot \frac{1}{0.4^{\circ}}$$
 Simplify.
$$= \frac{?}{0.4^{\circ}} \cdot 6.25$$
 Evaluate.

$$\frac{3 \cdot 3^{9}}{3^{10}} = \frac{?}{?} \frac{3^{1+9}}{3^{10}}$$

$$= \frac{?}{?}$$

$$= \frac{?}{?} 3^{10-10}$$

$$= \frac{?}{?} 3^{0}$$

$$= \frac{?}{?} 1$$

$$\frac{t^0 \cdot t^7}{t^5}$$

$$\frac{\mathbf{3}}{t^5}$$

$$t^2$$

Lesson 1.5 Zero as an Exponent

Independent Practice #1-8 & 15

Practice 1.5

Simplify each expression and evaluate.

- 1 8³ · 8⁰
- $(2.3) \cdot 10^2 + 5 \cdot 10^1 + 1 \cdot 10^0$
- $(9^{-3})^0 \cdot 5^2$

Homework #1-8

1.2° \div 1.8°

2 5⁴ · (-5)⁰

- $4 7 \cdot 10^3 + 4^2 \cdot 10^2 + 5 \cdot 10^0$
- $\frac{7^4 \cdot 7^5}{7^9}$
- $8 \frac{(6^{-3})^{-2} \cdot 8^6}{48^6}$

ICWOIN #1-0

Tuesday Homework Lesson 1.5 #1-8

Lesson 1.5 Zero and Negative Exponents

Simplify each expression and evaluate.

1. 94 . 90

2. 11³ · (-11)⁰

Period

3. $\left(\frac{6}{7}\right)^8 \cdot \left(\frac{6}{7}\right)^0$

4. $9^2 \cdot 10^3 + 5^3 \cdot 10^2 + 2^6 \cdot 10^9$

- 5. $4.7 \cdot 10^3 + 6 \cdot 10^2 + 7 \cdot 10^0$
- 6. $\frac{5^3 \cdot 5^7}{5^{10}}$

Lesson Check #1 and 8 (can simplify expressions containing numbers raised to the power of zero)