Lesson 1.5 Negative Exponents (Day 2)

Objective
*Understand zero and negative exponents *Simplify expressions involving zero and negative exponents

- Common Core State Standards 8.EE. 1
- Mathematical Practices 4. Model mathematics. 5. Use tools strategically. 6. Attend to precision.

Lesson 1.5 Negative Exponents (Day 2)

Understanding Negative Exponents

1 Use the quotient of powers property to simplify each expression. Write the quotient in exponential notation.

Expression	Power
$\frac{4^{5}}{4^{3}}$	4^{2}
$\frac{4^{5}}{4^{4}}$	$?$
$\frac{4^{5}}{4^{5}}$	$?$
$\frac{4^{5}}{4^{6}}$	$?$
$\frac{4^{5}}{4^{7}}$	$?$

Lesson 1.5 Negative Exponents (Day 2)

Understanding Negative Exponents

1 Use the quotient of powers property to simplify each expression. Write the quotient in exponential notation.

Expression	Power
$\frac{4^{5}}{4^{3}}$	4^{2}
$\frac{4^{5}}{4^{4}}$	$?$
$\frac{4^{5}}{4^{5}}$	$?$
$\frac{4^{5}}{4^{6}}$	$?$
$\frac{4^{5}}{4^{7}}$	$?$

What expression did you write for $\frac{4^{5}}{4^{6}}$? What exponent did you use?

Lesson 1.5 Negative Exponents (Day 2)

Understanding Negative Exponents

1 Use the quotient of powers property to simplify each expression. Write the quotient in exponential notation.

Expression	Power
$\frac{4^{5}}{4^{3}}$	4^{2}
$\frac{4^{5}}{4^{4}}$	$?$
$\frac{4^{5}}{4^{5}}$	$?$
$\frac{4^{5}}{4^{6}}$	$?$

${ }^{5} 2$ Es In factored form, the quotient $\frac{4^{5}}{4^{6}}$ is $\frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}$. If you divide out all the common factors in the numerator and denominator, what is the value of $\frac{4^{5}}{4^{6}}$?

Lesson 1.5 Negative Exponents (Day 2)

Understanding Negative Exponents

1 Use the quotient of powers property to simplify each expression. Write the quotient in exponential notation.

Expression	Power
$\frac{4^{5}}{4^{3}}$	4^{2}
$\frac{4^{5}}{4^{4}}$	$? ?$
$\frac{4^{5}}{4^{5}}$	$? ?$
$\frac{4^{5}}{4^{6}}$	$? ?$
$\frac{4^{5}}{4^{7}}$	$? ?$

Lesson 1.5 Negative Exponents (Day 2)

What is a negative exponent?

For any nonzero real number a and any integer n,

$$
a^{-n}=\frac{1}{a^{n}}, a \neq 0
$$

\starHow is a power with a negative exponent written as an equivalent power with a positive exponent? Use an example to demonstrate. Possible answers: $2^{-1}=\frac{1}{2^{1}}$; $5^{-2}=\frac{1}{5^{2}}$

Lesson 1.5 Negative Exponents (Day 2)

Simplify each expression. Write your answer using a positive exponent.
Example 23
a) $13^{-4} \cdot 13^{7}$

Lesson 1.5 Negative Exponents (Day 2)

Simplify each expression. Write your answer using a positive exponent. a) $13^{-4} \cdot 13^{7}$ Method 1

	$13^{-4} \cdot 13^{7}$
	$=\frac{1}{13^{4}} \cdot 13^{7}$
	$=\frac{13^{7}}{13^{4}}$
	$=13^{7-4}$
	$=13^{3}$

Write using a positive exponent.
Simplify.
Use the quotient of powers property.
Simplify.

Method 2

$$
\begin{aligned}
& 13^{-4} \cdot 13^{7} \\
& =13^{-4+7} \\
& =13^{3}
\end{aligned}
$$

Use the product of powers property. Simplify.

Lesson 1.5 Negative Exponents (Day 2)

Simplify each expression. Write your answer using a positive exponent.

Example 23
b) $\frac{x^{-7}}{x^{4}}$

Lesson 1.5 Negative Exponents (Day 2)

Simplify each expression. Write your answer using a positive exponent.

Example 23

$$
\text { b) } \frac{x^{-7}}{x^{4}}
$$

Solution

$$
\begin{aligned}
\frac{x^{-7}}{x^{4}} & =\frac{1}{x^{7}} \cdot \frac{1}{x^{4}} \\
& =\frac{1}{x^{11}}
\end{aligned}
$$

Write using a positive exponent.
Simplify.

Lesson 1.5 Negative Exponents (Day 2)

Simplify each expression. Write your answer using a positive exponent.

Example 23

c) $9 m \div 3 m^{-2}$

Lesson 1.5 Negative Exponents (Day 2)

Simplify each expression. Write your answer using a positive exponent.

Example 23

c) $9 m \div 3 m^{-2}$

Math Note

For $3 m^{-2}$, only m is raised to the power of -2 . For $(3 m)^{-2}$, both 3 and m are raised to the power of -2 .

Solution

$$
9 m \div 3 m^{-2}
$$

$$
=\frac{9 m}{3 m^{-2}}
$$

Write the division as a fraction.

$$
=\frac{9}{3} \cdot \frac{m}{m^{-2}}
$$

Rewrite the fraction as the product of two fractions.

$$
=3 \cdot m^{1-(-2)}
$$

Use the quotient of powers property.

$$
=3 m^{3}
$$

Simplify.

Lesson 1.5 Negative Exponents (Day 2)
Your Turn
(4) $2.5^{-7} \div 2.5^{-4}$

Lesson 1.5 Negative Exponents (Day 2)

Your Turn

(4) $2.5^{-7} \div 2.5^{-4}$

$$
\begin{array}{rlrl}
2.5^{-7} \div 2.5^{-4} & =\frac{?}{?} & & \text { Use the } ?^{?} \text { of powers property. }(2.5)^{-7-(-4)} \text {; quotient } \\
& =\frac{?}{?}(2.5)^{-3} & & \text { Simplify. } \\
& =\frac{?}{?} \frac{1}{2.5^{3}} & & \text { Write using a ? exponent. positive } \\
& =? ~ ? ~ & ? .064 & \\
\text { Evaluate. }
\end{array}
$$

Lesson 1.5 Negative Exponents (Day 2)

Your Turn
(5) $\frac{(-6)^{3}}{(-6)^{4}}$

Lesson 1.5 Negative Exponents (Day 2)

Your Turn

$$
5 \frac{(-6))^{3}}{(-6)^{4}}
$$

(5) $\frac{(-6)^{3}}{(-6)^{4}}$

$$
\begin{aligned}
\frac{(-6)^{3}}{(-6)^{4}} & =?(-6)^{3-4} \\
& =\frac{?}{?}(-6)^{-1} \\
& =\frac{?}{?} \frac{1}{-6} \\
& =\frac{?}{?}-\frac{1}{6}
\end{aligned}
$$

Use the ? of powers property. quotient
Simplify.
Write using a ? exponent. positive
Simplify.

Lesson 1.5 Negative Exponents (Day 2)

Your Turn
(6) $14 a^{-5} \div\left(7 a \cdot 2 a^{-4}\right)$

Lesson 1.5 Negative Exponents (Day 2)

Your Turn

$$
\text { (6) } 14 a^{-5} \div\left(7 a \cdot 2 a^{-4}\right)
$$

(6) $14 a^{-5} \div\left(7 a \cdot 2 a^{-4}\right)$

$$
\begin{array}{rlrl}
14 a^{-5} \div\left(7 a \cdot 2 a^{-4}\right) & =\frac{?}{?} & & \text { Write the expression as } a ? \\
\frac{14}{7 \cdot 2} \cdot \frac{a^{-5}}{a \cdot a^{-4}} & =\frac{?}{?} \cdot \frac{?}{?} & & \text { Rewrite the fraction as the product of two fractions. } \\
\frac{14}{14} \cdot \frac{a^{-5}}{a^{1+(-4)}} & =? \text { fraction } \\
1 \cdot a^{-5-(-3)} & =? & ? \\
& =\frac{?}{?} & \text { Use the ? } & \text { Use the quotient of powers property to the denominator. product to the resulting new fraction. } \\
& =? & \text { Simplify. } a^{-2} \\
a^{2} & \text { Write using a ? exponent. positive }
\end{array}
$$

Lesson 1.5 Negative Exponents

Independent Practice \#9-14 \& 16-20

\qquad Homework \#1-8

Practice 1.5

```
Name:
```

\qquad Wednesday Homework Lesson1.5\#9-20

Simplify each expression. Write your answer using a negative exponent

9. $6^{-8} \cdot 6^{3}$
10. $\frac{(-9)^{-4}}{(-9)^{4}}$
11. $\frac{5}{6} \div\left[\left(\frac{5}{6}\right)^{7} \cdot\left(\frac{5}{6}\right)^{0}\right]$

12. $\frac{y^{0}}{y^{4} \cdot y^{3}}$
13. $\frac{7 p^{-6} \cdot 6 p^{-3}}{3 p^{-5}}$

Lesson Check \#10 and 19 (can simplify expression containing numbers with a negative exponent)

