Objective

*I can evaluate and solve problems with square and cube roots.

- Common Core State Standards 8EE1 & 8.E.E.2 Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
- **Mathematical Practices** 4. Model mathematics. 5. Use tools strategically. 6. Attend to precision. *MP 7 Look for and use structure*

Perfect Squares Tiles Activity

Learning Target:

- 1. Using the square tiles, make the smallest perfect square you can.
 - a. How many tiles did you use?
 - b. What are the dimensions of your square (length and width)?
- 2. Using more tiles, make the next smallest perfect square you can.
 - a. How many tiles did you use?
 - b. What are the dimensions of your square (length and width)?
- 3. Make the next smallest perfect square you can.
 - a. How many tiles did you use?
 - b. What are the dimensions of your square (length and width)?

A Number that is a Perfect	Dimensions of the Square	What is the Square Root of the
	(length x width)	Perfect Square Number?
Example: 1	1X1= 1 ²	1

To square a number, just multiply it by itself

Negative Numbers

You can also square negative numbers.

Example: What is $(-5)^2$?

Answer:

(-5) × (-5) = **25**

(because a negative times a negative gives a positive)

Lesson 1.6 Square and Cube Roots (Day 1)
Example Find the two square roots of 49.

Evaluate Square Roots of Positive Real Numbers.

When you multiply a number by itself, you are squaring that number, or raising it to the second power. For example, $3^2 = 9$ and $(-3)^2 = 9$.

You can use $\sqrt{9} = 3$ to indicate the positive square root of 9, and $-\sqrt{9} = -3$ to indicate the negative square root of 9.

Not every number has a square root. For example, -9 has no square root, because there are no two identical factors of -9. Both $(-3)^2$ and 3^2 are equal to 9.

Guided Practice	
Solve. Show your work.	
 Find the two square roots of 169. 	

Why Is This Important?

Why is this "plus or minus" Important? Because you don't want to miss a solution!

Example: Solve $x^2-9 = 0$

Start with: $x^2-9 = 0$

Move 9 to right: $x^2 = 9$

Take Square Root: $X = \pm \sqrt{9}$

Answer: $X = \pm 3$

If we don't remember the "±" we would miss the "-3" answer

Lesson 1.6 Square and Cube Roots (Day 1) To understand cube roots, first we must understand cubes How to Cube A Number To **cube** a number, just use it in a multiplication **3 times** ... Example: What is 3 Cubed? 3 3 Cubed = $= 3 \times 3 \times 3 = 27$

Perfect Cubed Sugar Activity

- 1. Using the sugar cubes, make the smallest perfect cube you can.
 - a. How many cubes did you use?
 - b. What are the dimensions of the cubes length?
- 2. Using more sugar cubes, make the next smallest perfect cube you can.
 - a. How many cubes did you use?
 - b. What are the dimensions of the cubes length?
- 3. Make the next smallest perfect cube you can.
 - a. How many cubes did you use?
 - b. What are the dimensions of the cubes length?

 A Number that is a Perfect	Dimensions of the Cube (a³)	What is the Cube Root Perfect Cube Numb		
Example: 1	1x1x1= 1 ³	1		
			The second second	
			and the second s	
			And St. International Contract	
			The second s	

Lesson 1.6 Square and Cube Roots (Day 1)
Find the cube root of 343.

.

esson 1.6 Square	quare and Cube Roots (Day 1)	
Guided Practice Solve. Show your work.		
2 Find the cube root of $\frac{1}{729}$	9.	

Guided Practice

Solve. Show your work.

Find the cube root of
$$\frac{1}{729}$$

Solve an equation involving a variable that is squared or cubed.

Example

Solve each equation.

a) $x^2 = 4.41$

Solution

Since $4 = 2^2$, use a guess-and-check strategy to find the square root of 4.41, starting with 2.1, 2.2, and so on.

 $x^{2} = 4.41$ $x^{2} = 2.1^{2} \text{ or } (-2.1)^{2}$ x = 2.1 or -2.1

 $4.41 = 2.1 \cdot 2.1$ and $4.41 = (-2.1) \cdot (-2.1)$.

Show both the positive and negative square roots.

Lesson 1.6 Square and Cube Roots (Day 1) Solve an equation involving a variable that is squared or cubed. Example **b)** $x^3 = 1,000$

Solve an equation involving a variable that is squared or cubed.

Example

b)
$$x^3 = 1,000$$

Solution

 $x^{3} = 1,000$ $x^{3} = 10^{3}$ $\sqrt[3]{x^{3}} = \sqrt[3]{10^{3}}$ x = 10

Solve for x by taking the cube root of both sides. Show the cube root.

Guided Practice

Solve. Show your work.

3 $x^{2} = 2.25$ $x^{2} = 2.25$ $x^{2} = ? \text{ or } ? 1.5^{2}; (-1.5)^{2} 2.25 = ? ? \text{ or } (?) (?) 1.5; 1.5; -1.5; -1.5$ $x = ? \text{ or } ? \text{ Show both the } ? \text{ and } ? \text{ roots. } 1.5; -1.5; \text{ positive; } negative square}$

Solve. Show your work.	
4 $x^3 = \frac{1}{8}$ Cube Roots Calculator	
 Answer:	
Reset	
http://www.calculatorsoup.com/ca	al
culators/algebra/cuberoots.php	
	1

Name:	Date:	
	Tuesday Homework	
Find the two square roots tenth when you can.	of each number. Round your answer to the nearest	
1 25	2 64	
3 🔙 80	4 🔄 120	