Objective

*I can evaluate and solve problems with square and cube roots by solving real world problems.

- Common Core State Standards 8EE1 & 8.E.E.2 Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
- Mathematical Practices 4. Model mathematics. 5. Use tools strategically. 6. Attend to precision. MP 7 Look for and use structure

*Use Practice 1.6 to take notes

Solve a real-world problem involving squares of unknowns.

Theresa wants to put a piece of carpet on the floor of her living room. The floor is a square with an area of 182.25 square feet. How long should the piece of carpet	
be on each side?	

*Use Practice 1.6 to take notes

Theresa wants to put a piece of carpet on the floor of her living room. The floor is a square with an area of 182.25 square feet. How long should the piece of carpet be on each side?

Solution

Let the length of each side of the carpet be x feet.

 $x^2 = 182.25$ Translate into an equation. $\sqrt{x^2} = \sqrt{182.25}$ Solve for x by taking the po

Solve for x by taking the positive square root of both sides.

x = 13.5 Use a calculator to find the square root.

The length of each side of the carpet is 13.5 feet.

Think Math

Why does the negative square root of 182.25 not make sense for this scenario? Explain.

Lengths are always positive.

*Use Practice 1.6 to take notes

*Use Practice 1.6 to take notes

A square field has an area of 98.01 square meters. Find the length of each side of the field.

$$x^2 = \frac{?}{1}$$
 98.01Translate into an equation.

$$? = ?$$
 Solve for x by taking the positive $?$ root of both sides. $\sqrt{x^2}$; $\sqrt{98.01}$; square

 $x = \frac{?}{m}$ Use a calculator to find the square root. 9.9

The length of each side is ? meters. 9.9

*Use Practice 1.6 to take notes

A fully inflated beach ball contains 288π cubic inches of air. What is the radius of the beach ball?

A beach ball is a sphere, so you can use the formula for the volume of a sphere.

$$V = \frac{4}{3}\pi r^3$$

By substituting 288π for V, you can solve for r.

*Use Practice 1.6 to take notes

A fully inflated beach ball contains 288π cubic inches of air. What is the radius of the beach ball?

Solution

Let the radius of the beach ball be r inches.

$$\frac{4}{3}\pi r^3 = 288\pi$$
 Substitute values.

$$\frac{3}{4} \cdot \frac{4}{3} \pi r^3 = \frac{3}{4} \cdot 288 \pi$$
 Multiply both sides by $\frac{3}{4}$.

$$\pi r^3 = 216\pi$$
 Simplify.

$$\frac{\pi r^3}{\pi} = \frac{216\pi}{\pi}$$
 Divide both sides by π .

$$r^3 = 216$$
 Simplify.

$$\sqrt[3]{r^3} = \sqrt[3]{216}$$
 Solve for x by taking the cube root of both sides.

$$r = \sqrt[3]{216}$$
 Simplify.

$$r = 6$$
 in. Use a calculator to find the cube root.

The radius of the beach ball is 6 inches.

Using the value π , the approximate volume of the beach ball is 904.8 in³ (rounded to the nearest tenth).

Think Math

 288π cubic inches is an exact volume. What is an approximate volume of the beach ball? Explain.

*Use Practice 1.6 to take notes

Robin bought a crystal globe that has a volume of $1,774\frac{2}{3}\pi$ cubic centimeters. Find the radius of the crystal globe.

Let the radius of the crystal globe be r centimeters.

Math Note

Remember that you can express areas and volumes of circles and spheres in terms of π to simplify calculations.

*Use Practice 1.6 to take notes

Robin bought a crystal globe that has a volume of

 $1,774\frac{2}{3}\pi$ cubic centimeters. Find the radius of the crystal globe.

Let the radius of the crystal globe be r centimeters.

$$\frac{4}{3}\pi r^3 = \frac{?}{?}$$
? \quad ? \quad ? \quad ?

 $\frac{4}{3}\pi r^{3} = \frac{?}{}$ Substitute values. 1,774 $\frac{2}{3}\pi$? . ? = ? . ? Multiply both sides by ? $\frac{3}{4}$; $\frac{4}{3}\pi r^{3}$; $\frac{3}{4}$; 1,774 $\frac{2}{3}\pi$; $\frac{3}{4}$

? = ? Simplify. πr^3 ; 1,331 π

$$\frac{1}{?} = \frac{1}{?}$$

Divide both sides by $\frac{?}{7}$. $\frac{\pi r^3}{7}$; $\frac{1,331\pi}{7}$; π

Simplify. r^3 ; 1,331

Solve for x by taking the $\frac{?}{}$ root of both sides. $\sqrt[3]{r^3}$; $\sqrt[3]{1,331}$; cube

Simplify. r; $\sqrt[3]{1,331}$

$$r = \frac{?}{}$$
 cm

Use a calculator to find the cube root. 11

The radius of the crystal globe is __?_ centimeters. 11

Lesson 1.6 Square and Cube Roots (Day 2) Your Turn

A spherical watermelon has a volume of 562.5π cubic centimeters.

What is the diameter of the watermelon?

Let the radius of the watermelon be r centimeters.

Lesson 1.6 Square and Cube Roots (Day 2) Your Turn

A spherical watermelon has a volume of 562.5π cubic centi What is the diameter of the watermelon?

Let the radius of the watermelon be r centimeters.

Let the radius of the watermelon be r centimeters.

$$\frac{4}{3}\pi r^3 = \frac{?}{}$$

Substitute values. 562.5π

Multiply both sides by $\frac{?}{4}$; $\frac{3}{4}$

$$\frac{?}{?} = \frac{?}{?}$$

? = ? Simplify. r^3 ; 421.875

Solve for x by taking the $\frac{?}{}$ root of both sides. $\sqrt[3]{r^3}$; $\sqrt[3]{421.875}$; cube

Simplify. r; $\sqrt[3]{421.875}$

$$r = ?$$
 cm

Use a calculator to find the cube root. 7.5

Diameter = $2 \cdot r$

Substitute values. 7.5

$$=$$
 ? cm

Evaluate. 15

The diameter of the watermelon is ? centimeters. 15

Lesson 1.6 Square and Cube Roots

Independent Practice #9-16

Lesson Check #8 and 17 Can evaluate the cube root of a number and solve real-world problems