Week 2 Thursday Course 3 Warm-up
What happened to automobile gas mileage from 1940-1980?

A) It increased.
B) It decreased.
C) It stayed the same.
D) It decreased, then increased.

Which of the following is equivalent to the expression below?
$\frac{4^{5}}{4^{2}}$
A part of the real number line is shown below.
 Which letter represents the location of $\sqrt{12}$?
A) W
B) X
C) Y
D) Z

Alyssa drew a trapezoid congruent to the trapezoid below. Which figure did she draw?

A) $4^{2.5}$
B) 4^{3}
C) 4^{7}
D) 4^{52}

B)

c)
D)

Week 2 Thursday Course 3 Warm-up A part of the real number line is shown below.
What happened to automobile gas mileage from 1940-1980?

Which letter represents the location of $\sqrt{12}$?
A) W
B) X
B) It decreased.
C) It stayed the same.
D) It decreased, then increased.

Which of the following is equivalent to the expression below?
$\frac{4^{5}}{4^{2}}$
$\checkmark Y$
D) Z

Alyssa drew a trapezoid congruent to the trapezoid below. Which figure did she draw?

A) $4^{2.5}$
v 4^{3}
C) 4^{7}
D) 4^{52} --ロロ

B)

c)

Lesson 10.2 Scatter Plots Day 4

Objective TSW

- Understand line of best fit.
- Write a linear equation for a line of best fit.
- Use and equation for a
 line of best fit.

Common Core State Standards
8SP.2- Know that straight lines are widely used to model relationship between two quantitative variable 8.SP. 3 Use the equation of a linear model to solve problems in the context of bivariate measurement data Mathematical Practices 1. Solve problems/persevere. 2. Reason. 4. Model mathematics

Lesson 10.2 Scatter Plots Day 4

TSW

- Understand line of best fit.
- Write a linear equation for a line of best fit.
- Use and equation for a line of best fit

Vocabulary

Interpolate-

Extrapolate-

Use an Equation for a Line of Best Fit.

You can use an equation of a line of best fit to make estimates or predictions. When you use a line of best fit or its equation to estimate a value between data points that you already know, you interpolate to get the estimated value. When you make a prediction that is outside of the range of the data, you extrapolate to get the predicted value.

Example 6 Use a line of best fit to estimate data.

The diagram below shows the scatter plot of data in Example 5.

a) Use the graph to estimate the percent of adults who got their news from newspapers in the year 1999.

Example 6 Use a line of best fit to estimate data.

The diagram below shows the scatter plot of data in Example 5.

Years Since 1990

-

\square

Example 6 Use a line of best fit to estimate data.

The diagram below shows the scatter plot of data in Example 5.

Years Since 1990
b) Use the equation in Example 5 to estimate the percent of adults who got their news from newspapers in the year 2010.

Example 6 Use a line of best fit to estimate data.

The diaaram below shows the scatter blot of data in Example 5.

b) Use the equation in Example 5 to estimate the percent of adults who got their news from newspapers in the year 2010.

Solution

The data were collected through year 2006. You can use the equation of the line to extrapolate a prediction for 2010.

Using $y=-0.6 x+66.4$, substitute 20 for x.
$y=-0.6(20)+66.4=54.4 \%$

From the trend observed in previous years, about 54.4\% of adults got their news from newspapers in year 2010.

Caution $/$ IIIIID
 Extrapolations can be misleading, because they assume that the linear trend continues outside the range of the data collected. The farther out from the data you predict, the less reliable your prediction will be.

Guided Practice

Solve.

3 The scatter plot below shows the number of eggs hatched, y, per 100 eggs in an incubator with varying temperatures, $x^{\circ} F$.

Guided Practice

Solve.

3 The scatter plot below shows the number of eggs hatched, y, per 100 eggs in an incubator with varying temperatures, $x^{\circ} \mathrm{F}$.

Temperature and Hatching Eggs

Temperature (${ }^{\circ} \mathrm{F}$)
a) Given that the line of best fit passes through $(80,41)$ and $(95,68)$, find the equation of the line of best fit.

First find the slope of the line of best fit that passes through the points $(80,41)$ and $(95,68)$.
$m=\frac{?-?}{?-?}=\frac{?}{?}=?$
Next find the y-intercept using the equation in slope-intercept form.

y	$=m x+b$		Use slope-intercept form.
$\frac{?}{?}$	$=\frac{?}{?}(?)+b$		Substitute for m, x, and y.
$?-\frac{?}{?}$	$=\frac{?}{?}+b-b$		Multiply.
$-b$		Subtract $?$ from both sides.	
	Simplify.		

Finally, write an equation in slope-intercept form, $y=m x+b$.
$y=\underline{?} x+\underline{?} \quad$ Substitute ? for m and ? for b.

The equation of the line of best fit is ?

Guided Practice

Solve.

3 The scatter plot below shows the number of eggs hatched, y, per 100 eggs in an incubator with varying temperatures, $x^{\circ} \mathrm{F}$.

Temperature and Hatching Eggs

a) Given that the line of best fit passes through $(80,41)$ and $(95,68)$, find the equation of the line of best fit.

First find the slope of the line of best fit that passes through the points $(80,41)$ and $(95,68)$
$m=\frac{?-?}{?-?}=\frac{?}{?}=? \frac{68-41}{95-80} ; \frac{27}{15} ; 1.8$
Next find the y-intercept using the equation in slope-intercept form.

$$
y=m x+b \quad \text { Use slope-intercept form. }
$$

$? ?(?+b$ Substitute for m, x, and $y .41 ; 1.8 ; 80$
$?=? \quad$ Multiply. 41; 144
$\underline{?}-\frac{?}{?}=\underline{?}+b-\underline{?}$ Subtract ? from both sides. $41 ; 144 ; 144 ; 144 ; 144$ Simplify. - 103

Finally, write an equation in slope-intercept form, $y=m x+b$
$y=? \quad$ Substitute ? for m and ? for $b .1 .8 ;-103$
The equation of the line of best fit is $? y=1.8 x-103$

Guided Practice

Solve.

3 The scatter plot below shows the number of eggs hatched, y, per 100 eggs in an incubator with varying temperatures, $x^{\circ} \mathrm{F}$.

Temperature and Hatching Eggs

Hatched Eggs

) Use the graph to estimate the number of eggs that would hatch per 100 eggs if the temperature of the incubator is kept at $86^{\circ} \mathrm{F}$.

About ? eggs would hatch if the temperature of the incubator is kept at \qquad
c) Use the equation to predict the number of eggs that would hatch per 100 eggs if the temperature of the incubator is kept at $65^{\circ} \mathrm{F}$.

Using the equation ? , substitute ? for x.
$y=? ? ? ?$
About ? eggs would hatch if the temperature of the incubator is kept at $65^{\circ} \mathrm{F}$.

Guided Practice

Solve.

3 The scatter plot below shows the number of eggs hatched, y, per 100 eggs in an incubator with varying temperatures, $x^{\circ} \mathrm{F}$.

Temperature and Hatching Eggs

b) Use the graph to estimate the number of eggs that would hatch per 100 eggs if the temperature of the incubator is kept at $86^{\circ} \mathrm{F}$.

About ? eggs would hatch if the temperature of the incubator is kept at ? $52 ; 86^{\circ} \mathrm{F}$
c) Use the equation to predict the number of eggs that would hatch per 100 eggs if the temperature of the incubator is kept at $65^{\circ} \mathrm{F}$.
Using the equation ? substitute ? for $x . y=1.8 x-103 ; 65$

About ? eggs would hatch if the temperature of the incubator is kept at $65^{\circ} \mathrm{F} .14$

Lesson 10.2 Scatter Plots Day 4

Practice 10.2 \#6-7

Challenge-

*MangaHigh provides additional challenge *Pick a Problem *BuzzMath

Lesson Check \#6-can use the equation of a line of best fit to estimate and predict data

Lesson 10.2 Scatter Plots Day 4

Ticket Out the Door-

Ticket Out the Door

Explain the difference between interpolation and extrapolation. Give examples of each.

