Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Objective

*Add and subtract numbers in scientific notation

- Common Core State Standards 8.EE. 4

Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size...Interpret scientific notation that has been generated by technology.

- Mathematical Practices 1.Solve problems/persevere 6. Attend to precision.

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Warm Up

*Take out homework

*Begin Practice 2-10 Scientific Notation

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Exercises

Write each number in standard form.

1. 5.3×10^{1}
2. 9.4×10^{3}
3. 7.07×10^{5}
4. 2.6×10^{-3}
5. 8.651×10^{-2}
6. 6.7×10^{-6}

Write each number in scientific notation.

$$
\text { 7. } 561
$$

8. 14
9. $56,400,000$
10. 0.752
11. 0.0064
12. 0.000581

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)
Exercises
Write each number in standard form.

Write each number in scientific notation.

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

\qquad DATE \qquad PERIOD

Write each number in standard form.

1. 9.08×10^{2}
2. 7.89×10^{3}
3. 4.115×10^{5}
4. 3.201×10^{6}
5. 5.1×10^{-2}
6. 7.7×10^{-5}
7. 3.85×10^{-4}
8. 1.04×10^{-3}

Write each number in scientific notation.
9. 4,400
10. 75,000
11. $69,900,000$
12. $575,000,000$
13. 0.084
14. 00099
15. 0.000000515
16. 0.0000007

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

17. Which number is greater: 3.5×10^{4} or 2.1×10^{6} ?
18. Which number is less 7.2×10^{7} or 9.9×10^{57}
19. POPULATION The table lista the populations of five countries. List the countries from least to greatest population.

CCountis	Eophifation
Augtralia	2.0×10^{7}
Brazil	1.9×10^{8}
Egypt	7.7×10^{7}
Luxembourg	4.7×10^{5}
Singapore	4.4×10^{6}

Source The Fivid fothod
20. SOLAR SYSTEM Pluto is 3.67×10^{9} miles from the Sun. Write this number in standard form.
21. MEASUREMENT One centimeter is equal to about 0,0000062 mile. Write this number in scientific notation.
22. DISASTERS In 2005, Hurricane Katrina caused over $\$ 125$ billion in damage in the southern United States. Write $\$ 125$ billion in scientific notation.

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Quick Write-
Write and answer the following statement:
To add or subtract number in scientific notation, the powers of 10 must be the

Quick Write-

To add or subtract number in scientific notation, the powers of 10 must be the \qquad SAME

To add or subtract numbers in scientific notation, the powers of 10 must be the same.

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Example 3- Small Numbers

Example 3 (Very Small Numbers)

A standard $C D$ is about $1.2 \cdot 10^{-3}$ meter thick. A thin coating on the $C D$ is approximately $7.0 \cdot 10^{-8}$ meter thick.
a) How thick is the CD with the coating added?
b) How much thicker is the CD than the coating?

Ask yourself....
*Can I rewrite the problem so the bases have the SAME power of ten?

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Example 3- Small Numbers

Example 3 (Very Small Numbers)

A standard CD is about $1.2 \cdot 10^{-3}$ meter thick. A thin coating on the CD is approximately $7.0 \cdot 10^{-8}$ meter thick.
a) How thick is the CD with the coating added?

Approximate thickness of the CD and coating
$=$ Thickness of CD + Thickness of coating
$=1.2 \cdot 10^{-3}+7.0 \cdot 10^{-8}$
$=1.2 \cdot 10^{-3}+0.00007 \cdot 10^{-3}$
$=(1.2+0.00007) \cdot 10^{-3}$
$=1.20007 \cdot 10^{-3} \mathrm{~m}$
Substitute.

Ask yourself....
*Can I rewrite the problem so the bases have the SAME power of ten?

Rewrite $7.0 \cdot 10^{-8}$ as $0.00007 \cdot 10^{-3}$.
Factor 10^{-3} from each term.
Add within parentheses.

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Example 3 (Very Small Numbers)
b) How much thicker is the CD than the coating?
A standard CD is about $1.2 \cdot 10^{-3}$ meter thick. A thin coating on the CD is
approximately $7.0 \cdot 10^{-8}$ meter thick.

Ask yourself....
*Can I rewrite the problem so the bases have the SAME power of ten?

Solution

Difference in thickness between the CD and coating
$=$ Thickness of CD - Thickness of coating
$=1.2 \cdot 10^{-3}-7.0 \cdot 10^{-8}$
$=1.2 \cdot 10^{-3}-0.00007 \cdot 10^{-3}$
$=(1.2-0.00007) \cdot 10^{-3}$
$=1.19993 \cdot 10^{-3} \mathrm{~m}$

Substitute.
Rewrite $7.0 \cdot 10^{-8}$ as $0.00007 \cdot 10^{-3}$.
Factor 10^{-3} from each term.
Add within parentheses.

The CD is about $1.19993 \cdot 10^{-3}$ meter thicker than the coating.

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Your Turn

 Guided Practice \#4 Page 76(4) A custom-made invitation using a 10-pt card stock is about $2.54 \cdot 10^{-4}$ meter thick. It is placed inside a tissue paper insert that is approximately $6.0 \cdot 10^{-6}$ meter thick.
a) How thick is the invitation when placed in the tissue paper insert?
b) How much thicker is the invitation than the tissue paper insert?

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2)

Your Turn

Guided Practice \#4

(4) A custom-made invitation using a 10-pt card stock is about $2.54 \cdot 10^{-4}$ meter thick. It is placed inside a tissue paper insert that is approximately $6.0 \cdot 10^{-6}$ meter thick.
a) How thick is the invitation when placed in the tissue paper insert? $2.6 \cdot 10^{-4} \mathrm{~m}$
b) How much thicker is the invitation than the tissue paper insert? $2.48 \cdot 10^{-4} \mathrm{~m}$

Lesson 2.2 Adding and Subtracting in Scientific Notation (Day 2

Independent Practice \#3-5, 7, and 14-15

Homework *Back Challenge
Solve. Show your work. Round the coefficient to the nearest tenth.

```
(3) \(3.8 \cdot 10^{3}+5.2 \cdot 10^{4}\)
\[
8.1 \cdot 10^{5}-2.8 \cdot 10^{4}
\]
```

\qquad
Thursday Homework
Practice 2.2
The table shows the amounts of energy, in Calories, contained in various foods.

Food (per $\mathbf{1 0 0} \mathbf{~ g})$	Energy (Cal)
Chicken breast	$1.71 \cdot 10^{5}$
Raw potato	$7.7 \cdot 10$
Cabbage	$2.5 \cdot 10^{4}$
Salmon	$1.67 \cdot 10^{5}$

5 Find the total energy in each food combination. Write your answer in scientific notation. Round coefficients to the nearest tenth.
a) Chicken breast and cabbage
b) Cabbage and raw potato

How many more Calories are in salmon than in cabbage?

> Lesson Check -Explain how to use scientific notation when calculating problems

