Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Math Warm Up

Wednesday	My Thinking	Correct/Compare
$-\frac{x+2}{3}-\frac{4-2 x}{2}=\frac{1}{6}$		

Lesson 3.1 Solving Linear Equations with one Variable (Day 8)

$-\frac{x+2}{3}-\frac{4-2 x}{2}=\frac{1}{6}$

My Thinking
Correct/Compare
$x=\frac{17}{4}$

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Objective TSW

- Understand and identify linear equations with no solution.
- Understand and identify linear equations with infinitely many solutions

Linear equations can be used to solve mathematical and realworld problems. A linear equation with one variable can have one solution, no solution, or infinitely many solutions.

Common Core State Standards 8.EE.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution

Mathematical Practices 1 Solve problems/persevere 2 Reason 4 Model Mathematics 7 Look for and use structure

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Example 4

Consistent Equations

$$
3(x-4)=2(x-1)
$$

Def-An equation withone
solution

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Consistent Equations

Def-An equation with one solution

Example 4

$$
3(x-4)=2(x-1)
$$ $x=0$ means zero is the solution

Solution

$$
\begin{aligned}
3(x-4) & \stackrel{?}{?} 2(x-1) \\
3 x-12 & \stackrel{?}{ } 2 x-2 \\
3 x-12-2 x & \stackrel{?}{\underline{2}} 2 x-2-2 x \\
x-12 & \stackrel{?}{\underline{ }}-2 \\
x-12+12 & \stackrel{?}{ }-2+12 \\
x & =10
\end{aligned}
$$

Use the distributive property.
Subtract $2 x$ from both sides.
Simplify.
Add 12 to both sides.
Simplify.

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Def- An equation with no solution

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Inconsistent Equation	$5(x+3)=5 x+3$
Example 4	
Def- An equation with no	
Solution	

Solution

$$
\begin{array}{rlr}
5(x+3) \stackrel{?}{ } 5 x+3 & \\
5 x+15 \stackrel{?}{ } 5 x+3 & \text { Use the distributive property. } \\
5 x+15-5 x \geqslant 5 x+3-5 x & \text { Subtract } 5 x \text { from both sides. } \\
15 & \neq 3 & \text { Simplify. }
\end{array}
$$

Because $15 \neq 3$, the equation has no solution. So, the equation is inconsistent.

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Identity

$$
3 x+5=x+2 x+5
$$

Def-An equation that is always true no matter what value is plugged in for the variable.
Infinite solutions!

How can I remember what Identity means? Identity sounds like identical meaning both sides of the equal sign are identical or the same

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Identity

Def-An equation that is always true no matter what value is plugged in for the variable. Infinite solutions!

$$
3 x+5=x+2 x+5
$$

$$
\begin{array}{|c|l|}
\hline \text { Caution } / \mathrm{F} / \mathrm{T} \\
5=5 \text { does not mean that } x=5 .
\end{array}
$$

$$
\begin{aligned}
& 3 x+5 \stackrel{?}{\underline{?}} x+2 x+5 \\
& 3 x+5 \stackrel{?}{\underline{2}} 3 x+5
\end{aligned}
$$

Combine like terms.

$$
\begin{aligned}
3 x+5-3 x & \stackrel{?}{=} 3 x+5-3 x & & \text { Subtract } 3 x \text { from both sides. } \\
5 & =5 & & \text { Simplify. }
\end{aligned}
$$

Once again, the variable x has disappeared. $5=5$ is always true, no matter what the value of x is. Because the solving ends with a true statement, the equation has infinitely many solutions.

2 minute Commercial Break

Decide...
Partner Pepsi
Partner CocaCola

2 minute Commercial Break

Think about what you will say for 10 seconds before discussing..

Partner Pepsi-
Explain the vocabulary words and ways to remember the meaning

Partner CocaColaExplain examples and common mistakes that we know to look for

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Tell whether each equation is inconsistent, consistent or identity. Be sure to example if there are no solutions, one solution or infinite solutions.

Guided Practice1	Type of Equation	Numberof Solutions
$7(x-3)-7 x-21=0$	*inconsistent	*no solution
	*identity	*one solution *infinitemany solutions

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Tell whether each equation is inconsistent, consistent or identity. Be sure to example if there are no solutions, one solution or infinite solutions.

Because ? $\neq 0$, the equation has ? solution. The equation is ? -42 ; no; inconsistent

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Tell whether each equation is inconsistent, consistent or identity. Be sure to example if there are no solutions, one solution or infinite solutions.

Guided Practice 2	Type of Equation	Number Of Solutions
$\qquad x+\frac{1}{4}=-\frac{1}{4}(4 x-1)$	*inconsistent	*no solution
*idensistent	*one solution *infinite many solutions	

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 1)

Tell whether each equation is inconsistent, consistent or identity. Be sure to example if there are no solutions, one solution or infinite solutions.

Guided Practice 2		
$x+\frac{1}{4}=-\frac{1}{4}(4 x-1)$	Type of Equation	Number of Solutions
*inconsistent	*no solution	
$*$ *onsistent	*identity	*infinite many solutions
Since the equation has one		

solution $x=0$, it is consistent

Independent Practice \#1-8
You may choose any 8 problems to solve

Nams_	Inoesendent fractice $=1$ -
Practice 3.2	
Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.	
(1) $2 x-3=-2\left(\frac{3}{2}-x\right)$	(2) $2 x+5=-4\left(\frac{3}{2}-x\right)$
(3) $3 x+5=2 x-7$	(4) $5 y+(86-y)=86+4 y$
(5) $0.5(6 x-3)=3(1+x)$	(6) $4(18 a-7)+40=3(4+24 a)$
(7) $\frac{1}{7}(7 x-21)=8 x+7 x-24$	(8) $\frac{1}{6}(12 x-18)=2\left(x-\frac{3}{2}\right)$
(9) $7-0.75 x=-7\left(\frac{3}{28} x+1\right)$	(10) $6+0.5 y=-2\left(3-\frac{1}{4} y\right)$
(11) $\frac{x-3}{4}=0.25 x-0.75$	(12) $\frac{1}{3} x+5=\frac{1}{6}(2 x-5)$
Challenge	
(18) Math Journal Look at this "proof" that $2=0$.	
When $a=1$ and $b=1$, then $(a-b)(a+b)=0$	
$a+b=0$ Divideboth sides by $a-b$. $1+1=0 \quad$ Substitute for a and b.	
$2=0$ Simplify.	
What is wrong with this proof? How can a true statement lead to an inconsistent equation?	

Challenge- \#16 IXL
"Pick a pumpkin"

