Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

Math Warm Up

Thursday
$3(x-1)-8=4(1+x)+5$

My Thinking

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

$$
\begin{aligned}
& \text { Thursday } \\
& 3(x-1)-8=4(1+x)+5
\end{aligned}
$$

My Thinking
My

Correct/Compare
$x=-20$

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

Objective TSW

- Understand and identify linear equations with no solution.
- Understand and identify linear equations with infinitely many solutions

Linear equations can be used to solve mathematical and realworld problems. A linear equation with one variable can have one solution, no solution, or infinitely many solutions.

Common Core State Standards 8.EE.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution

Mathematical Practices 1 Solve problems/persevere 2 Reason 4 Model Mathematics 7 Look for and use structure

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

Guided Practice

Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.

$$
2(x-1)+3=2 x+1
$$

*Write these examples in Math Notebook

Guided Practice

Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.

$$
2(x-1)+3=2 x+1
$$

(4) $2(x-1)+3=2 x+1$

$$
2(x-1)+3 \stackrel{\geq}{=} 2 x+1
$$

$? ? \quad ?+3 \xrightarrow{?} 2 x+1 \quad$ Use the distributive property. $2 x ;-; 2$? $22 x+1 \quad$ Combine like terms. $2 x+1$? $\xlongequal{2} 2 x+1-$? Subtract ? from both sides. $2 x+1-2 x ; 2 x ; 2 x$ $?=? \quad$ Simplify. 1; 1

Because ? $=\underline{?}$, the equation has ? solution(s). The equation is a(n) ? .
1; 1; infinitely many; identity

Guided Practice

Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.

$$
5\left(x+\frac{1}{5}\right)=5 x+3
$$

Guided Practice

Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.

$$
5\left(x+\frac{1}{5}\right)=5 x+3
$$

Since $1 \neq 3$, the equation has no solution. So, the equation is inconsistent.

Your Turn

Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.

$$
6(x+5)-10=3(2 x-3)
$$

2 minute Commercial Break

Decide...
Partner Chihuahua
(Taco Bell)
Partner Ronald
(McDonald)

2 minute Commercial Break

Think about what you will say for 10 seconds before discussing..

Chihuahua (Taco Bell) Tell if the equation is inconsistent, consistent, or identity. Be sure to explain if no solution, one solution, or infinite number of solutions
Partner McDonaldPraise or Coach *I like how you showed this equation was inconsistent, consistent, identity

Your Turn

Tell whether each equation has one solution, no solution, or an infinite number of solutions. Justify your answer.

$$
6(x+5)-10=3(2 x-3)
$$

$6(x+5)-10=3(2 x-3)$

$$
6(x+5)-10 \stackrel{?}{\underline{?}} 3(2 x-3)
$$

$? ? \quad ?-10 \stackrel{?}{\underline{?}} ?$? Use the distributive property. $6 x ;+; 30 ; 6 x ;-; 9$
? ? ?
? ? ?
? ? ?

Combine like terms. $6 x+20 ; 6 x-9$ Subtract ? from both sides. $6 x+20-6 x$; Simplify. 20; $\neq ;-9 \quad 6 x-9-6 x ; 6 x$

Because ? ? ?, the equation has ? solution(s). The equation is a(n) ?. $20 ; \neq ; 9$; no; inconsistent equation

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

Independent Practice \#1-5

Challenge-
"Pick a pumpkin"
IXL

Homework

Express each repeating decimal as a fraction. Show your work.
$130.08 \overline{3}$

Lesson Check \#2 Tell whether each equation has one solution, no solution or infinite number of solutions.

