Math Warm Up

	T	
Monday Read each question carefully.	My Thinking	Correct/Compare
AZ-8.EE.C.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). [From cluster: Understand the connections between proportional relationships, lines, and linear equations]		
 Which equation has exactly one solution? 		
A) $n - 2n + 1 = 2n - 3n - 1$		
B) 2n - n = 2n - 3n		
c) $1 - n - 2n = 1 - 2n - n$		
D) $n - (1 - 2n) = 2n + (n - 1)$		

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

Monday	My Thinking	Correct/Compare]—
 Which equation has exactly one solution? 			
A) $n - 2n + 1 = 2n - 3n - 1$			
✓ B) 2n - n = 2n - 3n			
c) $1 - n - 2n = 1 - 2n - n$			
D) $n - (1 - 2n) = 2n + (n - 1)$			

Lesson 3.2 Identifying the Number of Solutions in Linear Equations (Day 2)

Guided Practice

Example 7 Evaluate linear equations with two variables.

Find the value of y when x = 7 in each of the equations.

a)
$$y = \frac{x-5}{2}$$

Guided Practice

Example 7 Evaluate linear equations with two variables.

Find the value of y when x = 7 in each of the equations.

a)
$$y = \frac{x-5}{2}$$

Guided Practice

Example 7 Evaluate linear equations with two variables.

Find the value of y when x = 7 in each of the equations.

a)
$$y = \frac{x-5}{2}$$

Solution

 $y = \frac{7 - 5}{2}$ $y = \frac{2}{2}$ y = 1

Substitute 7 for x.

Subtract.

Simplify.

Math Note

Observe that in **a**), *y* is already expressed in terms of *x*. You just have to substitute for *x* to evaluate *y*. In **b**) and **c**), when you substitute a value for *x*, you get an equation with one variable *y*. You have to solve this one-variable equation to find the value of *y*.

xample 7 Evaluate linear equations with two variables.			
Substitute 7 for x.			
Subtract 4 from both sides.			
Simplify.			
Divide both sides by 3.			
Simplify.			

Example 7 Evaluate linear equations with two variables.				
c) $x = \frac{9}{2}y - 15.5$				
Solution				
$7 = \frac{9}{2}y - 15.5$	Substitute 7 for x.			
$7 + 15.5 = \frac{9}{2}y - 15.5 + 15.5$	Add 15.5 to both sides.			
$22.5 = \frac{9}{2}y$	Simplify.			
$22.5 \cdot 2 = \frac{9}{2}y \cdot 2$	Multiply both sides by 2.			
45 = 9y	Simplify.			
45 ÷ 9 = 9y ÷ 9	Divide both sides by 9.			
5 = y	Simplify.			

Your Turn

Guided Practice

Find the value of y when x = -4.

3
$$y = 7 + 3x$$

4 $\frac{1}{3}y = 2\left(x - \frac{1}{6}\right)$
5 $-6x - y = 17.75$

2 minute Commercial Break

2 minute Commercial Break

Decide... Partner Taco Bell *Coach or Praise Partner *Write Responses on Whiteboard Partner McDonald *Explain thinking for Problem 3, 4, 5

Your Turn

Guided Practice

Find the value of y when x = -4.

3
$$y = 7 + 3x - 5$$
 4 $\frac{1}{3}y = 2\left(x - \frac{1}{6}\right) - 25$ **5** $-6x - y = 17.75$ **6.25**

