The steepness of a line is called \qquad !

Circle the line with the biggest slope...

The letter we use for slope is a lowercase \qquad ! Why?! Because it comes from the French word monter which means to climb or to rise. FUN FACT!

When given a graph of a line, we need to know a simple definition of slope:

** Slope is the ratio of a line's \qquad change to its \qquad change.
That's what we mean by "rise over run"!

How to find the slope of a line when given a graph of a line:

1) Start at the point farthest to the \qquad !
2) Find the rise! Up: \qquad Down: \qquad
3) Find the run! Right: \qquad
Left: \qquad

Find the slope of the following lines!

$\mathrm{m}=$
$\mathrm{m}=$
$\mathrm{m}=$
$\mathrm{m}=$

Horizontal and Vertical Lines...

Horizontal Line

Sometimes we are not given a picture, but instead we are given 2 points on the line. When this is the case, we must implement another definition of slope:
$\mathrm{m}=$

In other words, slope is $\frac{\text { Change in }}{\text { Change in }}$

How to find the slope of a line when given two points on the line:

1) Subtract one y-value from another y-value! (It helps to draw arrows!)
2) Subtract one x-value from another x-value! (It helps to draw arrows!)

IMPORTANT:

* Subtracting a negative means \qquad !

Find the slope of the line that passes through each pair of points:
$(6,-1) \&(4,2)$
$(4,3) \&(3,-2)$
$(-1,7) \&(-3,1)$
$(3,4) \&(6,5)$

Slope!

The steepness of a line is called SLOPE !

Circle the line with the biggest slope...\longleftrightarrow

The letter we use for slope is a lowercase m! Why?! Because it comes from the French word monter which means to climb or to rise. FUN FACT!

When given a graph of a line, we need to know a simple definition of slope:

$$
\mathrm{m}=\frac{\text { RISE }}{\text { RUN }}
$$

** Slope is the ratio of a line's VERTICAL change to its HORIZONTAL change. That's what we mean by "rise over run"!

How to find the slope of a line when given a graph of a line:

1) Start at the point farthest to the LEFT !
2) Find the rise! Up: POSITIVE Down: Negative
3) Find the run! Right: PoSitive Left: NEGATVÉ

Find the slope of the following lines!

$m=\frac{-3}{4}$

$m=\frac{2}{4}=\frac{1}{2}$
$m=\frac{-4}{1}=-4$

Horizontal and Vertical Lines...

Sometimes we are not given a picture, but instead we are given 2 points on the line. When this is the case, we must implement another definition of slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

In other words, slope is $\frac{\text { Change in } y}{\text { Change in } x}$

How to find the slope of a line when given two points on the line:

1) Subtract one y-value from another y-value! (It helps to draw arrows!) 2) Subtract one x-value from another x-value! (It helps to draw arrows!) IMPORTANT: * Subtracting a negative means ADDITION$\quad \frac{7-3}{1+2}=\frac{4}{3}$

Find the slope of the line that passes through each pair of points:
$(6,-1) \&(4,2)$

$(4,3) \&(3,-2)$
$(-1,7) \&(-3,1)$

$(3,4) \&(6,5)$

$\frac{-1-2}{6-4}=\frac{-3}{2}$
$\frac{3+2}{4-3}=\frac{5}{1}=5$
$\frac{7-1}{-1+3}=\frac{6}{2}=3$

$$
\frac{4-5}{3-6}=\frac{-1}{-3}=\frac{1}{3}
$$

