Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

Lesson 5.2 Solving Systems of Linear Equations Using Elimination Method Day 4

Objective

TSW solve systems of
linear equations by finding the unique solution using the following strategy...
*Elimination Method
*Substitution Method

A system of linear equations may have a unique solution. It can
be solved using the elimination, substitution, or graphical methods.

Common Core State Standards 8EE 8a Understand that solutions to a system...satisfy both equations simultaneously. 8EE 8 b Solve Systems of two linear equations in two variables algebraically

Mathematical Practices 2 Reason 3 Construct arguments 4 Model Mathematics

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

QuickWrite-
What strategies have you learned to solve linear equations? Which strategy do you prefer? Why?

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

Definition of Substitution Methood

Subsitutition Methood

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

Definition of Suspsitution Method

Sibsithtriton Methood

A method of solving a system of equations in which one variable is expressed in terms of the other to eliminate one variable

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

STEP 1 Select one equation. Express one variable in terms of the other.
STEP 2 Substitute this new equation into the second equation to find the value of one variable.
STEP 3 Substitute this value in one of the equations to find the value of the other variable.

$$
\begin{array}{ll}
x+y=8 & \text { - Equation 1 } \\
x+2 y=10 & \text { - Equation 2 }
\end{array}
$$

STEP 1 Select one equation. Express one variable in terms of the other.
STEP 2 Substitute this new equation into the second equation to find the value of one variable.
STEP 3 Substitute this value in one of the equations to find the value of the other variable.

Use Equation 1 to express x in terms of y :

$$
\begin{aligned}
x+y & =8 & \\
x+y-y & =8-y & \quad \text { Subtract } y \text { from both sides. } \\
x & =8-y \quad \text { Equation } 3 & \text { Simplify. }
\end{aligned}
$$

Substitute Equation 3 into Equation 2 to get an equation with only one variable:

$$
\begin{aligned}
(8-y)+2 y=10 & \text { Simplify. } \\
8+y=10 & \text { Subtract } 8 \text { from both sides. } \\
8+y-8=10-8 & \text { Simplify. }
\end{aligned}
$$

Substitute 2 for y into Equation 3 to get $x=8-2=6$.
So, the solution to the system of equations is $x=6, y=2$.

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method Day 4

Guided Practice

Solve each system of linear equations using the elimination method.

0
$2 x+y=5$ - Equation 1 $y=4 x-7$-Equation 2

Guided Practice

Solve each system of linear equations using the elimination method.

(7)

$2 x+y=5$ - Equation 1 $y=4 x-7$ - Equation 2

Substitute Equation 2 into Equation 1:

$$
\begin{aligned}
& \underline{?}=? \\
& ?=? \quad \text { Simplify. } 6 x-7 ; 5 \\
& ? \quad \text { ? } \quad \text { ? ddd } ? \text { to both sides. } 6 x-7+7 ; 5+7 ; 7 \\
& ? \quad \text { ? } \quad \text { Simplify. 6x; } 12
\end{aligned}
$$

$$
\begin{aligned}
& x=\text { ? Simplify. } 2
\end{aligned}
$$

Substitute ? for x into Equation 2: 2

$$
\begin{aligned}
y & =4(\underline{?})-72 \\
& =? ?-7=? \quad 8 ; 1
\end{aligned}
$$

The solution to the system of equations is given by $x=$? and $y=$? $2 ; 1$

Guided Practice

Solve each system of linear equations using the elimination method.
(8) $4 x+3 y=23$ - Equation 1

$$
5 x+y=15-\text { Equation } 2
$$

Guided Practice

Solve each system of linear equations using the elimination method.

(8)

$$
\begin{array}{ll}
4 x+3 y=23 & \text { - Equation } 1 \\
5 x+y=15 & \text { - Equation } 2
\end{array}
$$

Use Equation 2 to express y in terms of x :

$$
5 x+y=15
$$

$$
\begin{array}{ll}
? & =\frac{?}{?} \quad \text { Subtract ? from both sides. } 5 x+y-5 x ; 15-5 x ; 5 x \\
? & \text { - Equation 3 } \\
\text { Simplify. } y ; 15-5 x
\end{array}
$$

Substitute Equation 3 into Equation 1:

```
    \(4 x+?\)
        \(?=? \quad\) Use the distributive property. \(4 x+45-15 x ; 23\)
        \(?=? \quad\) Simplify. \(-11 x+45 ; 23\)
        \(\underline{?}=? \quad\) Subtract ? from both sides. \(-11 x+45-45 ; 23-45 ; 45\)
        \(?=? \quad\) Simplify \(-11 x ;-22\)
\(\begin{array}{rl}? & ? \\ x & =?+? \\ ? & \text { Divide both sides by } \xrightarrow[?]{?} \quad-11 x ;-11 ;-22 ;-11 ;-11 \\ \text { Simplify. } 2\end{array}\)
Substitute ? for \(x\) into Equation 3: 2
\(y=? \quad 15-5(2)\)
    \(=? 5\)
```

The solution to the system of equations is given by $x=$? and $y=? .2 ; 5$

Guided Practice

Solve each system of linear equations using the elimination method.
$3 x-y=8$
$2 x+3 y=9$

Guided Practice

Solve each system of linear equations using the elimination method.
(9) $\begin{aligned} & 3 x-y=8 \\ & 2 x+3 y=9\end{aligned}$
$x=3, y=1$

Guided Practice

Solve each system of linear equations using the elimination method.
(10) $7 m+2 n=-8$

$$
2 m=3 n-13
$$

$$
m=-2, n=3
$$

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method

Practice 5.2 \#10,11,18,21,22,25

Practice 5.2

(1) $2 j+k=6$	(2) $2 j+3 \mathrm{k}=11$	(3) $3 m+n=30$
$j-k=8$	$2 \mathrm{j}-5 \mathrm{k}=3$	$2 m-n=20$
(4) $3 \mathrm{x}-\mathrm{y}=9$	(5) $5 s-t=12$	(6) $2 b+c=10$
$2 x-y=7$	$3 \mathrm{~s}+\mathrm{t}=12$	$2 b-c=6$
(7) $3 m-n=7$	(8) $79+b=10$	(9) $2 p+5 q=4$
Solve each system of linear equations using the substitution method.		
(10) $2 j+k=3$	(11) $2 \mathrm{~h}+3 \mathrm{k}=13$	(12) $3 m+b=23$
$k=j-9$	$h=2 k-4$	$m-b=5$
(13) $3 h-k=10$	(14) $3 \mathrm{~s}-\mathrm{t}=5$	(15) $2 \mathrm{x}+\mathrm{y}=20$
$h-k=2$	$s+2 t=4$	$3 x+4 y=40$
(10) $3 \mathrm{x}+2 \mathrm{y}=0$	(17) $5 x-y=20$	(18) $3 p+4 q=3$
$5 x-2 y=32$	$4 x+3 y=16$	$\frac{1}{2}+q=3 p$

Solve each system of linear equations using the elimination method or substitution
method. Explain why you choose each method.

(19) $2 x+7 y=32$	(20) $3 x+3 y=22$	(21) $7 m+2 n=20$
$4 x-5 y=-12$	$3 x-2 y=7$	$2 m=3 n-5$
(22) $3 \mathrm{~h}-4 \mathrm{k}=35$	(23) $2 h+7 k=32$	(24) $2 m+4=3 n$
$k=2 h-20$	$3 h-2 k=-2$	$5 m-3 n=-1$

Solve.
(25) Math Journal Sam solves the following system of linear equations by the
elimination method, without using cal elatior.

$2 x+3 y=1$

$3 x-17 y=23$
He can multiply the first equation by 3 and the second equation by 2 in order to eliminate x. Or he can eliminate y by multiplying the first equation by 17 and the second equation by 3 . Which way should Sam choose? Explain

Challenge-
*Solve created equations "Pick a Snowflake"
*Real World Problem (website)
*BuzzMath

Lesson Check \#22- Can choose the elimination or substitution method to solve systems of linear equations

Lesson 5.2 Solving Systems of Linear Equations Using Substitution Method

Ticket Out the Door-

How do you determine the solution to a system of linear equations algebraically? What strategy would you use?

