Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Week 1 Thursday Course 3 Warm-up
I At a fund raising event, a booth was set up to sell handmade cards and photo I frames. On the first day, 3 cards and 9 photo frames were sold for a total of $\$ 75$.
$\|^{\text {The next day, }} 8$ cards and 5 photo frames were sold for a total of $\$ 67$.
Find the selling price of a card

Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4
| Calculate the missing length Y. Round to nearest tenth

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

 frames. On the first day, 3 cards and 9 photo frames were sold for a tote $\begin{gathered}(24 x+72 y-204+15 y=600-201 \\ 24 x-24 x+72 y-15 y=399\end{gathered}$ The next day, 8 cards and 5 photo frames were sold for a total of $\$ 67$.
Find the selling price of a card and the selling price of a photo frame.

Let the price of a card be x and the price of a photo frame be y.
| $3 x+9 y=75$

$$
\begin{aligned}
& \text { —Eq. } 1 \\
& \text { - Eq. } 2
\end{aligned}
$$

Multiply Eq. 1 by 8 : $8(3 x+9 y)=8(75)$
| $24 x+72 y=600$
Multiply Eq. 2 by 3:
L $3(8 x+5 y)=3(67)$
-2
$24 x+15 y=201$

- Eq. 3

Finding Functions

$$
\begin{aligned}
& 57 y=399 \\
& \frac{57 y}{57}=\frac{399}{57}
\end{aligned}
$$

$$
y=7
$$

Substitute 7 for y into Eq. 2 :
$8 x+5(7)=67$
$8 x+35=67$
$8 x+35-35=67$
$8 x=32$
$\begin{aligned} \frac{8 x}{8} & =\frac{32}{8} \\ x & =4\end{aligned}$
The selling price of a card is $\$ 4$ and that of a

Finding Functions

Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4
| Calculate the missing length y. Round to nearest tenth

The value of x is approximately 13.0 .
$y^{2} \approx 11^{2}+(13.04+7)^{2}$
$y^{2}=11^{2}+20.04^{2}$
$y^{2} \sim 121+401.60$
$y^{2}=522.60$
$y=\sqrt{522.60}$

$$
y \approx 22.9
$$

$$
\text { The value of } y \text { is approximately } 22.9 \text {. }
$$

Lesson 6.3 Understanding Linear and Nonlinear Functions

Day 1

Objective

TSW identify linear and nonlinear functions by analyzing tables and graphs.

Common Core State Standards 8 F2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal description) 8 F3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

Mathematical Practices MP1 Solve problems/persevere MP2 Reason MP 4 Model Mathematics

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

You can find tell whether a function is linear by finding the rate of change, as shown below:

Examples of Linear Functions
a)

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

You can find tell whether a function is linear by finding the rate of change, as shown below:

Examples of Linear Functions
a)

Rate of change: $\quad \frac{6}{2}=3 \quad \frac{6}{2}=3 \quad \frac{6}{2}=3 \quad \frac{6}{2}=3$

The function has a constant rate of change, 3 .
So, the table represents a linear function.

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1
b)

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1
b)

Rate of change: $\frac{-6}{1}=-6 \quad \frac{-12}{2}=-6 \quad \frac{-18}{3}=-6 \quad \frac{-6}{1}=-6$

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Examples of Non-Linear Functions
c)

Math Note

A function with a varying rates of change is nonlinear.

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Examples of Non-Linear Functions
c)

Rate of change:

$$
\frac{3}{1}=3 \quad \frac{12}{2}=6 \quad \frac{33}{3}=11 \quad \frac{15}{1}=15
$$

Math Note

A function with a varying rates of change is nonlinear.

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Example 7 Tell whether a function represented in a table is linear.

The table shows the cooking times recommended for roasting turkeys of different weights. Tell whether the relation between the weight of a turkey, x pounds, and the time it takes to roast the turkey, t hours, is a linear function.

Weight of Turkey (\boldsymbol{x} pounds)	10	15	20	30
Time Taken (t hours)	3.0	3.5	4.0	5.0

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Example 7 Tell whether a function represented in a table is linear.

The table shows the cooking times recommended for roasting turkeys of different weights. Tell whether the relation between the weight of a turkey, x pounds, and the time it takes to roast the turkey, t hours, is a linear function.

Solution

The function has a constant rate of change, 0.1.
So, the table represents a linear function.

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Guided Practice

Tell whether each table of values represents a linear or nonlinear function. Explain.

1

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Guided Practice

Tell whether each table of values represents a linear or nonlinear function. Explain.

1

Rate of change:

$$
\frac{5}{2}=\frac{?}{?} \frac{?}{?}=? \frac{?}{?}=?
$$

Because the rate of change for the function is ?, constant the table represents a ? function. linear

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Guided Practice

Tell whether each table of values represents a linear or nonlinear function. Explain.

(2) | x | -5 | -3 | -1 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 28 | 26 | 22 | 14 | 4 |

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Guided Practice

Tell whether each table of values represents a linear or nonlinear function. Explain.

(2) | \boldsymbol{x} | -5 | -3 | -1 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 28 | 26 | 22 | 14 | 4 |

Because the rate of change for the function is ? not constant the table represents a ? function. nonlinear

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Practice 6.3 \#1-4

Challenge-
*Solve created equations "Pick a Snowflake" *BuzzMath

Lesson Check \#1 \& 3-can tell whether a table of values represents a linear or nonlinear functions

Lesson 6.3 Understanding Linear and Nonlinear Functions Day 1

Ticket Out the Door- Connect, Extend, Challenge

1. How are the ideas and information presented CONNECTED to what you already knew?
2. What new ideas did you get that EXTENDED or pushed your thinking in new directions?

What is still CHALLENGING or confusing for you to get your mind around? What questions, 3. wonderings or puzzles do you now have?

