

Week 1 Wednesday Course 3 Warm-up

Elizabeth and Lauren sold cookies for a school fundraiser and made \$1,316.70 Togeth the girls sold a total of 831 cookies. Elizabeth sold chocolate chip cookies for \$ 1.50 each, and Lauren sold peanut butter cookies for \$1.65 each. How many cookies did Lauren sell?

468

Soaring Above The Re

Objective

TSW understand concept of translations

*drawing images after translation

*find coordinates of points after

translation

Common Core State Standards

8G1 Verify experimentally the properties of rotations, reflections, and translations.

8G1 a Lines are taken to lines, and line segments to line segments of the same length.

Mathematical Practices MP3 Construct arguments MP 4 Model Mathematics MP5 Use tools strategically

 Geometric transformations move figures about on a plane. Each type of transformation changes some properties of a figure, but leaves other properties unchanged.

Find the Coordinates of Points After Translations.

Example 4 Find the coordinates of points after translations.

A triangular block of concrete ABC at a construction site is to be relocated using the translation: 5 units to the right and 3 units down. The coordinates of A, B, and C are given in the table. Find the coordinates of the relocated block A'B'C'. Then state the new coordinates for any point (x, y) under this translation.

Original Point	Is Mapped Onto
A (1, 1)	A' (?, ?)
B (3, 1)	B' (?, ?)
C (2, 5)	C' (?, ?)
(x, y)	(?, ?)

To find the coordinates of the block after the translation, add 5 units to the x-coordinate and subtract 3 units from the y-coordinate for each point.

olution	
Original Point	Is Mapped Onto
A (1, 1)	A' (6, -2)
B (3, 1)	B' (8, — 2)
C (2, 5)	C' (7, 2)
(x, y)	(x + 5, y - 3)

Guided Practice

Complete.

4 A triangle has coordinates A (2, 1), B (3, 2), and C (1, 4). It is moved under the translation 2 units to the left and 3 units up. Find the coordinates of the image triangle A'B'C'. Then state the new coordinates for any point (x, y) under this translation.

Original Point	Is Mapped Onto
A (2, 1)	A' (<u>?</u> , <u>?</u>)
B (3, 2)	B' (<u>?</u> , <u>?</u>)
C (1, 4)	C' (<u>?</u> , <u>?</u>)
(x, y)	(,)

To find the coordinates of A', B', and C', subtract 2 units from the x-coordinate and add 3 units to the y-coordinate of A, B, and C.

Guided Practice

Complete.

4 A triangle has coordinates A (2, 1), B (3, 2), and C (1, 4). It is moved under the translation 2 units to the left and 3 units up. Find the coordinates of the image triangle A'B'C'. Then state the new coordinates for any point (*x*, *y*) under this translation.

Original Point	Is Mapped Onto	To find the coordinates of A' , B' ,
A (2, 1)	A' (<u>?</u> , <u>?</u>)	0; 4 and C', subtract 2 units from the x-coordinate and add 3 units to the
B (3, 2)	B' (<u>?</u> , <u>?</u>)	1; 5 y-coordinate of A, B, and C.
C (1, 4)	C' (<u>?</u> , <u>?</u>)	-1; 7
(x, y)	(,)	x - 2; y + 3

coordinates of an image point using addition

Ticket Out the Door- Connect, Extend, Challenge

1.	How are the ideas and information presented CONNECTED to what you already knew?
2.	What new ideas did you get that EXTENDED or pushed your thinking in new directions?
3.	What is still CHALLENGING or confusing for you to get your mind around? What questions, wonderings or puzzles do you now have?