Integers are the set of negative and positive whole numbers.

Adding Integers

If the signs are the same...

- add the numbers and keep the sign $^{\dagger}5 + ^{\dagger}2 = ^{\dagger}7$ or $5 + ^{2}2 = ^{7}$

If the signs are different...

 subtract the numbers and take the sign of the number with the largest absolute value

$$^{+}5 + 2 = ^{+}3$$
 or $5 + ^{+}2 = 3$

*Same sign, add and keep
*Different signs subtract
*Use the sign of the bigger number,
then you'll be exact

Subtracting Integers

Change the subtraction problem into an addition problem with keep, change, change.

- Keep the sign of the first number
- Change the subtraction (-) to addition (+)
- Change the sign of the second number

keep change change

Rewritten as: $^{+}5 + ^{+}2 = ^{+}7$

keep change change

Rewritten as: 5 + 2 = 7

- Use the addition rules

Integers are the set of negative and positive whole numbers.

Adding Integers

If the signs are the same...

- add the numbers and keep the sign $^{+}5 + ^{+}2 = ^{+}7$ or $^{-}5 + ^{-}2 = ^{-}7$

If the signs are different...

 subtract the numbers and take the sign of the number with the largest absolute value

$$^{+}5 + 2 = ^{+}3 \text{ or } 5 + ^{+}2 = 3$$

*Same sign, add and keep

*Different signs subtract

*Use the sign of the bigger number, then you'll be exact

Subtracting Integers

Change the subtraction problem into an addition problem with keep, change, change.

- Keep the sign of the first number
- Change the subtraction (-) to addition (+)
- Change the sign of the second number

keep change change

Rewritten as: $^{\dagger}5 + ^{\dagger}2 = ^{\dagger}7$

keep change change

Rewritten as: $^{-5} + ^{-2} = ^{-7}$

- Use the addition rules