Math Warm up 4 (Demo Version)

Read each question carefully.
AZ-8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{\wedge} 2 \times 3^{\wedge}-5=3^{\wedge}-3=1 / 3^{\wedge} 3=1 / 27$. [From cluster: Work with radicals and integer exponents]

1) If the equation below is true, what is the missing exponent?

$$
2^{-6} \times 2^{-2} \times 2^{4} \times 2^{4}=2^{?}
$$

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]
2) Which of the following represents the cube root of 25 ?
A) $\sqrt{25}$
B) 25.3
C) 25^{3}
D) $\sqrt[3]{25}$

Math Warm up 4 (Demo Version)

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]

3) What does the following represent?

$\sqrt{38}$
A) the square root of 38
B) the square of 38
C) the quotient of 38 and 2
D) 38 multiplied by 2

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]
4) What is d ?
$d \times d \times d=125$
A) cube root of 125
B) square root of 50
C) cube of 5
D) square of 25

Math Warm up 4 (Demo Version)

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]
5) What is w ?
$w \times w=36$
A) cube root of 36
B) square root of 36
C) cube of 6
D) square of 6

