Math Warm Up 4 C2 (Demo Version)

Read each question carefully.

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

1) What is the distance between -8 and -5 ?

A) -13
B) -3
C) 3
D) 13

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

2) What is the distance between -7 and 3?

A) -10
B) -4
C) 4
D) 10

Math Warm Up 4 C2 (Demo Version)

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

3) What is the distance between 6 and 14 ?

A) 20
B) 8
C) -8
D) -20

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

4) What is the distance between -2 and 4 ?

A) 6
B) 2
C) -2
D) -6

Math Warm Up 4 C2 (Demo Version)

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
5) The distance between which numbers is the same as the distance between 12 and 5 ?
A) -25 and -12
B) -15 and 0
C) -4 and 3
D) 2 and 15

