Math Warm Up 5 (Demo Version)

Read each question carefully.
AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]

1) Which of the following represents the cube root of 18 ?
A) 18^{2}
B) $\sqrt[3]{18}$
C) $18 \div 3$
D) 18^{3}

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]

2) What is the value of the expression below?

$\sqrt{169}$
A) 12
B) 13
C) 84.5
D) 28,561

Math Warm Up 5 (Demo Version)

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]

3) Which is equal to the following?

$\sqrt{25}$
A) 50
B) 20
C) 12.5
D) 5

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]
4) What is s ?
$s^{2}=64$
A) square of 8
B) cube of 8
C) cube root of 64
D) square root of 64

Math Warm Up 5 (Demo Version)

AZ-8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that SQRT2 is irrational. [From cluster: Work with radicals and integer exponents]
5) What is a ?
$a \times a \times a=1,000$
A) square of 100
B) cube of 10
C) square root of 10
D) cube root of 1,000

