Week 1 Monday Course 3 Warm-up
Solve the system of linear equations using the elimination method or substitution method.

$$
\begin{aligned}
& x+2 y=4 \\
& x-y=1
\end{aligned}
$$

Finding Distance
Find the distance from A to B

| Alan can ride his bike on two highways to get from his house to his friend Carl's house. He can also ride his bike on a side street between the two houses. How far does he bike if he takes the side street?

Week 1 Monday Course 3 Warm-up

Solve the system of linear equations using the elimination method or substitution method.

$$
\begin{aligned}
& x+2 y=4 \\
& x-y=1
\end{aligned}
$$

$$
x=2, y=1
$$

Finding Distance
Find the distance from A to B

Let $A(0,5)$ be $\left(x_{1}, y_{1}\right)$ and $B(7,1)$ be $\left(x_{2}, y_{2}\right)$.

Distance from A to $B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(7-0)^{2}+(1-5)^{2}}$
$=\sqrt{7^{2}+(-4)^{2}}$
$=\sqrt{65}$ units

Alan can ride his bike on two highways to get from his house to his friend Carl's | house. He can also ride his bike on a side street between the two houses. How far does he bike if he takes the side street?

Week 1 Tuesday Course 3 Warm-up
Select all the expressions that are equivalent to -7

$$
\begin{aligned}
& -\frac{14}{2} \times \frac{7}{7} \\
& 7 \times-1 \times-1 \times-1 \\
& -4 \times \frac{7}{4} \\
& -7 \times-1 \\
& \square 7^{-1}
\end{aligned}
$$

Week 1 Tuesday Course 3 Warm-up

'Select all the expressions that are equivalent to -7

Week 1 Wednesday Course 3 Warm-up
A system of equations is given.
$7 x+2 y=25$
$2 x+2 y=10$
| What are the values of x and y in the solution to the system?
|
|

Simplify Expression

$$
\left[\left(\frac{2}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{-1}\right]^{3}
$$

Week 1 Wednesday Course 3 Warm-up A system of equations is given.

$$
\begin{aligned}
& 7 x+2 y=25 \\
& 2 x+2 y=10
\end{aligned}
$$

I What are the values of x and y in the solution to the system? $\quad X=3$

Week 1 Thursday Course 3 Warm-up

Seventy concert tickets were sold for $\$ 550$. Each adult ticket cost $\$ 9$ and each children's ticket cost $\$ 5$. Find the number of adult tickets and the number of children's tickets sold.

Finding Distance
Find the distance from A to C

$$
\text { Let } A(0,5) \text { be }\left(x_{1}, y_{1}\right) \text { and } C(4,-2) \text { be }\left(x_{2}, y_{2}\right) \text {. }
$$

A tree has a shadow length of approximately 9 feet. The distance from the tip of | the tree to the tip of the shadow is about 15 feet. How tall is the tree?

Week 1 Thursday Course 3 Warm-up
Seventy concert tickets were sold for $\$ 550$. Each adult ticket cost $\$ 9$ and each children's ticket cost $\$ 5$. Find the number of adult tickets and the number of children's tickets sold. Adult tickets: 50; Children's tickets: 20

Finding Distance Find the distance from A to C Let $A(0,5)$ be $\left(x_{1}, y_{1}\right)$ and $C(4,-2)$ be $\left(x_{2}, y_{2}\right)$.

Distance from A to $C=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(4-0)^{2}+[(-2)-5]^{2}} \\
& =\sqrt{4^{2}+(-7)^{2}} \\
& =\sqrt{65} \text { units }
\end{aligned}
$$

A tree has a shadow length of approximately 9 feet. The distance from the tip of the tree to the tip of the shadow is about 15 feet. How tall is the tree?

12

Week 1 Friday Course 3 Warm-up

George paid $\$ 2.75$ for 4 granola bars and 1 apple. Addison paid $\$ 2.25$ for 2 granola bars and 3 apples. Find the cost of each granola bar and each apple.

Finding Distance
Find the distance from B to C Let $B(7,1)$ be $\left(x_{1}, y_{1}\right)$ and $C(4,-2)$ be $\left(x_{2}, y_{2}\right)$

> The support pole of the tent shown forms one leg of a right triangle. One side of the tent forms the hypotenuse of the right triangle. Find the length of the base of the tent.

Week 1 Friday Course 3 Warm-up
George paid $\$ 2.75$ for 4 granola bars and 1 apple. Addison paid $\$ 2.25$ for 2 granola bars and 3 apples. Find the cost of each granola bar and each apple.
I Granola bar: \$0.60; Apple: \$0.35

|

Distance Formula

$$
\begin{aligned}
& \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \sqrt{(4-7)^{2}+[(-2)-1]^{2}} \\
& \sqrt{(-3)^{2}+(-3)^{2}} \\
& \sqrt{9+9} \\
& \sqrt{18} \text { units }
\end{aligned}
$$

