Week 1 Monday Course 3 Warm-up

Jenny purchased 26 magazines for her project research at a total cost of $\$ 134$. The art related magazines cost $\$ 4$ each, while the science related magazines l cost $\$ 7$ each. Find the number of art related magazines and science related
 magazines purchased.

Finding Functions

Which table DOES NOT represent a function?

Jenny purchased 26 magazines for her project research at a total cost of \$134. The art related magazines cost $\$ 4$ each, while the science related magazines cost $\$ 7$ each. Find the number of art related magazines and science related magazines purchased.

$$
\text { Let the number of art magazines be } x \text { and }
$$ the number of science magazines be y.

$$
\begin{array}{lrr}
\begin{array}{ll}
\text { the number of science magazines be } y . & \\
x+y=26 & \text { - Eq. } 1
\end{array} & \frac{3 y}{3}=\frac{30}{3} \\
4 x+7 y=134 & \text { - Eq. } 2 & y=10 \\
\text { Use Eq. } 1 \text { to express } x \text { in terms of } y \text { : } & &
\end{array}
$$

$$
x=26-y
$$

Substitute Eq. 3 into Eq. 2:

$$
\begin{array}{r}
4(26-y)+7 y=134 \\
104-4 y+7 y=134 \\
104+3 y=134
\end{array}
$$

$$
\begin{aligned}
104+3 y-104 & =134-104 \\
3 y & =30 \\
\frac{3 y}{3} & =\frac{30}{3} \\
y & =10
\end{aligned}
$$

- Eq. 3 Substitute 10 for y into Eq. 3:
$x=26-10$
$x=16$
Jenny purchased 16 art magazines and 10 science magazines.

Finding Functions
Which table DOES NOT represent a function?
A)

x	y
0	5
1	6
2	7
-1	4

C)

x	y
0	0
1	2
2	4
-1	2

B)

x	y
0	5
1	6
2	7
2	4

D)

x	y
0	0
1	3
2	6
-1	0

Week 1 Tuesday Course 3 Warm-up

A total of 95 theme park tickets were sold for $\$ 960$. Each adult ticket cost $\$ 12$ I and each child's ticket cost $\$ 9$. Find the number of adult tickets and the number of children's tickets sold.
।
|

A total of 95 theme park tickets were sold for $\$ 960$. Each adult ticket cost $\$ 12$ and each child's ticket cost $\$ 9$. Find the number of adult tickets and the number | of children's tickets sold.

Let the number of adult tickets be x and the number of children's tickets be y.

$$
x+y=95
$$

-Eq. 1
$12 x+9 y=960 \quad$ - Eq. 2
Use Eq. 1 to express x in terms of y :
$x=95-y \quad$ - Eq. 3

$$
\begin{aligned}
1,140-3 y+1,140 & =960+1,140 \\
-3 y & =2,100 \\
\frac{-3 y}{-3} & =\frac{2,100}{-3} \\
y & =60
\end{aligned}
$$

Substitute Eq. 3 into Eq. 2:
$12(95-y)+9 y=960$
$1,140-12 y+9 y=960$
Substitute 60 for y into Eq. 3:
$x=95-60$
$x=35$
There were 35 adult tickets and 60 children's

- tickets sold.

Finding Functions

Which table DOES NOT represent a function?
A)

x	y
1	-2
2	-4
-1	2
0	0

c)

x	y
0	0
1	2
-1	4
-1	-2

B)

x	y
1	-2
2	-1
-1	-4
0	-3

D)

x	y
1	-2
2	-4
-1	2
-2	4

Week 1 Wednesday Course 3 Warm-up
| A vending machine only accepts dimes and quarters. There are 85 coins I in the machine with a total value of $\$ 16.75$. How many of each coin are in the machine?

Findina Functions

Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4

Calculate the missing length X . Round to nearest tenth

11 in.

A vending machine only accepts dimes and quarters. There are 85 coins ' in the machine with a total value of $\$ 16.75$. How many of each coin are in

Ithe machine?

Let the number of quarters be x and the number of dimes be y.

$$
\begin{aligned}
& 10 x+25 y=1,675 \\
& x+y=85 \\
& \text { Multiply Eq. } 2 \text { by } 10 \text { : } \\
& 10(x+y)=10(85) \\
& 10 x+10 y=850
\end{aligned}
$$

Subtract Eq. 3 from Eq. 1:
$(10 x+25 y)-(10 x+10 y)=1,675-850$
$10 x-10 x+25 y-10 y=825$

$$
15 y=825
$$

$$
\frac{15 y}{15}=\frac{825}{15}
$$

$$
y=55
$$

$$
\text { Substitute } 55 \text { for } y \text { into Eq. 2: }
$$

$$
x+55=85
$$

$$
x+55-55=85-55
$$

There are 30 quarters and 55 dimes in the vending machine.

Finding Functions

Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4

Calculate the missing length X . Round to nearest

 tenth$$
\begin{aligned}
x^{2} & =7^{2}+11^{2} \\
x^{2} & =49+121 \\
x^{2} & =170 \\
x & =\sqrt{170} \\
x & \approx 13.04
\end{aligned}
$$

11 in.

Week 1 Thursday Course 3 Warm-up

${ }^{\prime}$ At a fund raising event, a booth was set up to sell handmade cards and photo I frames. On the first day, 3 cards and 9 photo frames were sold for a total of $\$ 75$.
The next day, 8 cards and 5 photo frames were sold for a total of $\$ 67$.

Find the selling price of a card

Finding Functions
Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4

Calculate the missing length Y . Round to nearest tenth

11 in.

At a fund raising event, a booth was set up to sell handmade cards and $\mathrm{S}_{\text {subhact Eq. } 4 \text { from Eq. 3: }}$ frames. On the first day, 3 cards and 9 photo frames were sold for a tote $\begin{gathered}24 x+7 y,-(124 x+15 y)=600-201 \\ 24 x-24 x+72 y-15 y=399\end{gathered}$ The next day, 8 cards and 5 photo frames were sold for a total of $\$ 67 . \begin{array}{r}24 x-24 x+72 y-15 y=399 \\ 5 y=399 \\ 5 y\end{array}$
Find the selling price of a card and the selling price of a photo frame.

$$
\frac{57 y}{57}=\frac{399}{57}
$$

| Let the price of a card be x and the price of a photo frame be y.
| $3 x+9 y=75$

> - Eq. 1
> - Eq. 2

Multiply Eq. 1 by 8 :
$8(3 x+9 y)=8(75)$
| $24 x+72 y=600$

- Eq. 3

$$
y=7
$$

$$
\begin{aligned}
& \text { Substitute } 7 \text { for } y \text { into Eq. } 2: \\
& 8 x+5(7)=67 \\
& 8 x+35=67 \\
& 8 x+35-35=67 \\
& 8 x=32 \\
& \frac{8 x}{8}=\frac{32}{8}
\end{aligned}
$$

The selling price of a card is $\$ 4$ and that of a $3(8 x+5 y)=3(67)$ photo frame is $\$ 7$.
Finding Functions
Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4

Calculate the missing length y. Round to nearest tenth

The value of x is approximately 13.0 .
$y^{2} \approx 11^{2}+(13.04+7)^{2}$
$y^{2}=11^{2}+20.04^{2}$
$y^{2} \approx 121+401.60$
$y^{2}=522.60$
$y=\sqrt{522.60}$
$y \approx 22.9$
The value of y is approximately 22.9 .

11 in.

Week 1 Friday Course 3 Warm-up
${ }^{\text {I Adam bought }} 5$ packets of roasted peanuts and $\overline{3}$ packets of beef jerky for $1 \$ 37.80$. Joe bought 3 packets of roasted peanuts and 2 packets of beef jerky for $\$ 23.87$. Find the cost of a packet of roasted peanuts and a packet of beef jerky.

Finding Functions Which graph shows y as a function of p ?

Figure 1

Figure 3

Figure 2

Figure 4

Calculate the missing length X. Round to nearest tenth

Week 1 Friday Course 3 Warm-up
 $\mid \$ 37.80$. Joe bought 3 packets of roasted peanuts and 2 packets of beef jerky for $\$ 23.87$. Find the cost of a packet of roasted peanuts and a packet of beef jerky.

The cost of a packet of roasted peanuts is $\$ 3.99$ and that of a packet of beef jerky is \$5.95.

Finding Functions Which graph shows y as a function of p ?

Figure 1

Figure 3

Figure 2

Figure 4

Calculate the missing length X. Round to nearest tenth

