Week 1 Monday Course 3 Warm-up
What is the solution?

$$
\left\{\begin{array}{l}
2 x-y=0 \\
x+2 y=10
\end{array}\right.
$$

Finding Functions
Which ordered pair (x, y) can be added to the table so that y is still a function of x ?

\times	-5	14	17	-8	
y	3	8	9	5	

A) $(1,1)$
B) $(14,7)$
c) $(17,8)$
D) $(-5,1)$

What is the solution?

$$
\left\{\begin{array}{l}
2 x-y=0 \\
x+2 y=10
\end{array}\right.
$$

$$
x=2, y=4
$$

Finding Functions

Which ordered pair (x, y) can be added to the table so that y is still a function of x ?

\times	-5	14	17	-8	
y	3	8	9	5	

\checkmark A) $(1,1)$
B) $(14,7)$
C) $(17,8)$
D) $(-5,1)$

Mrs. Johnson has errands to accomplish at the post office and the grocery store. The grocery store is 6 miles north of the post office and the grocery store is 8 miles from home. How far is the post office from home?
5.3 miles

Grocery Store

Post Office

Week 1 Tuesday Course 3 Warm-up
What is the solution to this system of
A) $(2,-4)$ equations?
в) $(4,0)$

$$
\begin{aligned}
& 2 x-y=8 \\
& x+y=4
\end{aligned}
$$

c) $(6,4)$
D) $(12,-8)$

Which of the following tables best represents the graph of the linear equation?

Table 3

x	y
-3	5
-2	3
1	-3
2	-5

${ }^{\text {A }}$ aite is flying on a $\mathbf{1 0 0}$-foot string tied to a | stake in the ground. If the kite has vertical height of 80 feet, how far is it from the stake to the point on the ground directly below the kite?

Week 1 Tuesday Course 3 Warm-up

What is the solution to this system of equations?
A) $(2,-4)$

$$
\begin{aligned}
& 2 x-y=8 \\
& x+y=4
\end{aligned}
$$

B) $(4,0)$

C) $(6,4)$
D) $(12,-8)$

Finding Functions

A) Table 1
B) Table 2
c) Table 3
D) Table 4

A kite is flying on a 100 -foot string tied to a stake in the ground. If the kite has vertical height of $\mathbf{8 0}$ feet, how far is it from the stake to the point on the ground directly below the kite?

60 feet

I Elizabeth and Lauren sold cookies for a school fundraiser and made \$1,316.70 Togeth | the girls sold a total of 831 cookies. Elizabeth sold chocolate chip cookies for \$ $\mathbf{1 . 5 0}$ | each, and Lauren sold peanut butter cookies for $\$ 1.65$ each. How many cookies did Lauren sell?

Finding Functions
What is the value of x in the diagram below?

Figure 1

Figure 3

Figure 2

Elizabeth and Lauren sold cookies for a school fundraiser and made \$1,316.70 Togeth the girls sold a total of 831 cookies. Elizabeth sold chocolate chip cookies for $\$ 1.50$ each, and Lauren sold peanut butter cookies for $\$ 1.65$ each. How many cookies did Lauren sell?

1468

Finding Functions

Which graph shows y as a function of x ?

Figure 1

Figure 3

Figure 2

Figure 4

What is the value of x in the diagram below?

Week 1 Thursday Course 3 Warm-up

The sum of two numbers is 36 . Their difference is 14 . What are the two numbers?

Finding Functions
Which ordered pair (x, y) can be added to the table so that y is still a function of x ?

\times	-5	14	17	-8	
y	3	-8	-9	5	

A) $(17,3)$
B) $(-6,-3)$
C) $(-8,-5)$

ग) $(-5,5)$

The sum of two numbers is 36 . Their difference is 14 . What are the two numbers?

11 and 25

Which ordered pair (x, y) can t function of x ?

\times	-5	14	17	-8	
y	3	-8	-9	5	

A) $(17,3)$
\checkmark B) $(-6,-3)$
C) $(-8,-5)$
D) $(-5,5)$

What is the area of the rectangle?
$12 \mathrm{~cm}^{2}$
I
1
I

Week 1 Friday Course 3 Warm-up

Sam bought a total of 25 hamburgers and hot dogs. His total bill was $\$ 70.50$. If each hamburger cost $\$ 3$ and each hot dog cost $\$ 2.50$, how many hot dogs did Sam buy?

Findina Functions

An input-output table for the function $y=-5 x+15$ is shown below. Use the table to determine which value of x solves the equation $5 x+15=0$.

input (x)	output (y)
-3	30
-1	20
0	15
1	10
3	0

A) -3
B) 0
C) 1
D) 3

A 25 foot ladder is leaning against the side of a house. If the bottom of the ladder is 7 feet from the side of the house, how far up does the ladder reach on the house?

