Rational Number Operations Pre/PostTest (Demo Version)

Read each question carefully.
AZ-7.NS.A.2c Apply properties of operations as strategies to multiply and divide rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

1) Simplify.
$4 \frac{1}{2} \times \frac{22}{27}=$
A) $-2 \frac{1}{3}$
B) $-2 \frac{2}{3}$
C) $3 \frac{2}{3}$
D) $3 \frac{3}{4}$

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

2) Which answer is correct?

$0.8+\frac{1}{9}$
A) $\frac{0.8}{9}$
B) $\frac{8}{9}$
C) 0.9
D) $0.9 \overline{1}$

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1a Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
3) Which situation is modeled by the equation below?
$35+(-35)=0$
A) getting paid $\$ 35$ for mowing a lawn, then getting paid $\$ 35$ for mowing another lawn
B) getting paid $\$ 35$ for mowing a lawn, then spending $\$ 35$ on video games
c) spending $\$ 35$ for new video games, then spending $\$ 70$ more on video games at another store
D) spending $\$ 35$ for new video games, then mowing a lawn for free

AZ-7.NS.A. 3 Solve real-world and mathematical problems involving the four operations with rational numbers.
(Computations with rational numbers extend the rules for manipulating fractions to complex fractions.) [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
4) The temperature was 75° Fahrenheit. The temperature dropped at a rate of 10° per hour.

What was the temperature in degrees 8 hours later?
A) $-15^{\circ} \mathrm{F}$
B) $-5^{\circ} \mathrm{F}$
C) $5^{\circ} \mathrm{F}$
D) $15^{\circ} \mathrm{F}$

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

5) What is the distance between -8 and -5 ?

A) -13
B) -3
C) 3
D) 13

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

6) What is the distance between 7 and $1 \frac{1}{3}$?

A) $5 \frac{2}{3}$
B) $6 \frac{1}{3}$
C) $6 \frac{2}{3}$
D) $8 \frac{1}{3}$

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

7) What is the difference?

$(-14)-(-8)$
A) -22
B) -6
C) 6
D) 22

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
8) What is the sum?
$-68+(-17)$
A) -85
B) -51
C) 51
D) 85

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.2b Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
9) What is the quotient?
$(-64) \div(-4)$
A) -18
B) -16
C) 16
D) 18

AZ-7.NS.A.2b Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

10) What is the quotient?

$(-36) \div 3$
A) -33
B) -12
C) 12
D) 18

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1b Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
11) $x+38=0$

What is the value of x ?

A) 38
B) -38
C) 0
D) -1

AZ-7.NS.A. 1 b Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
12) $x+(-19)=0$

What is the value of x ?
A) -1
B) 0
C) 19
D) -19

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
13) What is the difference?

34-(-75)
A) -109
B) -41
C) 41
D) 109

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

14) What is the difference?

(-63) - 65
A) -128
B) -2
C) 2
D) 128

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
15) What is the sum?
$85+(-845)$
A) -760
B) -265
C) 760
D) 840

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

16) What is the difference?

34-(-75)
A) -109
B) -41
C) 41
D) 109

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1b Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
17)
$x+(-19)=0$
What is the value of x ?
A) -1
B) 0
C) 19
D) -19

AZ-7.NS.A.2a Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=$ 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

18) What is the value of the expression below?

$(-7)(8)$
A) -78
B) -56
C) 48
D) 56

Rational Number Operations Pre/PostTest (Demo Version)

AZ-7.NS.A.1dApply properties of operations as strategies to add and subtract rational numbers. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]
19) What is the difference?
$(-984)-840$
A) $-1,824$
B) $-1,724$
C) 144
D) 1,724

AZ-7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. [From cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers]

20) What is the distance between -7 and 3 ?

A) -10
B) -4
C) 4
D) 10

